
10109027205-00
Revision 0
Oct 1999
ORA

ORACLE Driver Guide

UNIFACE

UNIFACE V7.2.05
ORACLE Driver Guide
Revision 0

Restricted Rights Notice

This document and the product referenced in it are subject to the following
legends:

© 1997-1999 Compuware Corporation. All rights reserved. Unpublished - rights
reserved under the Copyright Laws of the United States.

U.S. GOVERNMENT RIGHTS-Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in Compuware Corporation
license agreement and as provided in DFARS 227.7202-1(a) and 227.7202-3(a)
(1995), DFARS 252.227-7013(c)(1)(ii)(OCT 1988), FAR 12.212(a) (1995), FAR
52.227-19, or FAR 52.227-14 (ALT III), as applicable. Compuware Corporation.

This product contains confidential information and trade secrets of Compuware
Corporation. Use, disclosure, or reproduction is prohibited without the prior
express written permission of Compuware Corporation.

Trademarks

Compuware is a registered trademark of Compuware Corporation and UNIFACE is a
registered trademark of Compuware Europe B.V. CICS, DB2, IBM, and OS/2 are
trademarks of International Business Machines Corporation. SOLID Server (TM), SOLID
Bonsai Tree (TM), SOLID Remote Control (TM), and SOLID SQL Editor (TM) are
trademarks of Solid Information Technology Ltd. All other company or product names used
in this publication are trademarks of their respective owners.

24-hour online customer support

Pillars of Wisdom is an Internet-based support service which provides real-time
access to a wealth of UNIFACE product and technical information. Features
include online product documentation, technical tips and know-how, up-to-date
platform availability and product fixes. You can obtain full access privileges for
Pillars of Wisdom by completing an online registration form (customer license
information is required) at the following address:
http://uniface.pillars.compuware.com/

Your suggestions and comments about UNIFACE documentation and course
material are highly valued. Please send your reactions to:

Compuware Europe B.V.
Delivery Methods & Practices
P. O. Box 12933
1100 AX Amsterdam e-mail: DM&P-Hotline@nl.compuware.com
The Netherlands fax: +31 (0)20 311-6213

To order UNIFACE publications, contact your UNIFACE representative.

ORACLE Driver Guide (Oct 1999) iii

Contents

UNIFACE V7.2.05

1 Introduction
1.1 Important notes on U3.x, U4.0, and U5.0 drivers .2
1.2 Features and enhancements .3

1.2.1 U3.x drivers .3
1.2.2 U4.0 and U5.0 drivers. .4
1.2.3 Stored packages. .4
1.2.4 Statement caching and cursor management .4
1.2.5 Improvements in referential integrity implementation5
1.2.6 More storage formats supported .5
1.2.7 ORACLE wildcard characters in retrieve profiles.5
1.2.8 Mapping of candidate keys .5
1.2.9 Number of concurrent logon paths .5
1.2.10 Use of ORACLE array fetching. .6
1.2.11 Step size configuration .6
1.2.12 Support for ORACLE automatic logons .6
1.2.13 3GL services .6
1.2.14 Other features and enhancements .6

1.3 ORACLE products supported .7
1.3.1 The Pro*C product .8

1.4 ORACLE products not supported. .8

2 Installation
2.1 SQL scripts for creating the Application Objects Repository 9
2.2 Utilities .11

2.2.1 Create Table utility .11
2.2.2 Create Script utility .11
2.2.3 Load Definitions utility .12

UNIFACE V7.2.05

iv (Oct 1999)

3 System environment
3.1 Networking considerations .15
3.2 Necessary permissions .16
3.3 Records, indexes, tables, and fields .17

3.3.1 Location of schema objects .17
3.3.2 Naming rules for schema objects .18
3.3.3 Primary and candidate keys .19
3.3.4 Indexes .20
3.3.5 Tables .20
3.3.6 Fields .22
3.3.7 Definition dependency .22
3.3.8 Views. .22

4 Configuring
4.1 Driver assignments for UNIFACE system information .25
4.2 Paths and logging on .26

4.2.1 open and close instructions. .26
4.2.2 Logon path specification. .27
4.2.3 Concurrent logon paths. .30
4.2.4 Logon paths and special services for 3GL .31
4.2.5 Driver options affecting logon paths .32

4.3 Retrieving data. .32
4.3.1 Retrieve profiles .32
4.3.2 where clause .33
4.3.3 u_where clause .33
4.3.4 order by qualifier .33
4.3.5 selectdb instruction. .34

4.4 U3.x transaction control .34
4.4.1 Transactions .34
4.4.2 Locking .35
4.4.3 commit and rollback .36

4.5 Implementation of segmented interfaces .36
4.6 Performance issues .38

4.6.1 Cursors and statement caching .38
4.6.2 Stepped hitlist .43

4.7 Extended driver behavior .46
4.8 ORACLE character sets .46
4.9 Assignment settings .47

5 sql and the SQL Workbench
5.1 Special considerations for SQL .50

5.1.1 $result and $status. .50

UNIFACE V7.2.05

ORACLE Driver Guide (Oct 1999) v

5.1.2 Other considerations .50
5.2 Special considerations for PL/SQL .51
5.3 Monitoring SQL in the message frame .52

6 Stored packages
6.1 Creating stored packages .57
6.2 Stored package version .57

6.2.1 Compatibility of package versions .58
6.2.2 Packages used by multiple drivers .59

6.3 Dependency of packages .60
6.4 Dependency of packages on driver options .61
6.5 Upgrading the stored packages .61

6.5.1 The upgrade procedure .61
6.6 Driver options affecting stored packages .62

6.6.1 Referential integrity .65

7 Service Stored Procedures
7.1 Component names .69
7.2 Parameters .70
7.3 USYS$ORA_PARAMS. .71
7.4 Exception behavior .71
7.5 Examples .72

8 Data types and packing codes
8.1 Explanation of ORACLE storage formats. .77

8.1.1 Char .77
8.1.2 Varchar2 .77
8.1.3 Varchar .77
8.1.4 Number .78
8.1.5 Date .78
8.1.6 Long .78
8.1.7 Raw. .79
8.1.8 Long Raw .80
8.1.9 CLOB and BLOB. .80
8.1.10 Rowid .80
8.1.11 Mlslabel and Raw Mlslabel .81

8.2 Modify packing code mapping. .81
8.2.1 The map fixed length to variable option .82
8.2.2 The disable segmented fields option .82

UNIFACE V7.2.05

vi (Oct 1999)

9 System parameters
9.1 Environment variables .85

9.1.1 ORACLE_HOME .85
9.1.2 ORACLE_SID. .86
9.1.3 TWO_TASK. .86
9.1.4 NLS_LANG .86

10 Overview of driver options (USYS$ORA_PARAMS)
10.1 multi byte .91

11 Generic database conversion procedure
11.1 The conversion procedure .93

11.1.1 The full conversion procedure .94

12 Migrating between U2.x, U3.x, U4.0, and U5.0
12.1 Migrating from U2.x to U3.x .97

12.1.1 The migration procedure .97
12.1.2 Migrating from the U2.0 ORA/ORT driver .98
12.1.3 Migrating from the U2.1 ORA/ORT driver .99
12.1.4 Compatibility problems .100
12.1.5 Review and modify assignment files. .105

12.2 Migration from the U3.x to the U4.0 or U5.0 driver .107
12.2.1 Converting data with segmented fields .107
12.2.2 Accessing ORACLE from 3GL .109

13 Accessing ORACLE from 3GL
13.1 U3.x service functions .111

13.1.1 U3.x ORA versus U2.0 ORA .111
13.1.2 Pro*C versus OCI .111
13.1.3 Same logon path versus independent logon .112
13.1.4 First logon path .112
13.1.5 Requirement for sharing a connection with the ORA driver113

13.2 Using a U3.x ORA driver .114
13.2.1 Accessing the driver’s connection with the Pro*C interface 114
13.2.2 Accessing the driver’s connection with the OCI interface114
13.2.3 Accessing an independent connection with the Pro*C interface. . .114
13.2.4 Accessing an independent connection with the OCI interface 115
13.2.5 Example using U3.x ORA driver .116

13.3 Using a U4.0 or U5.0 driver .117

UNIFACE V7.2.05

ORACLE Driver Guide (Oct 1999) vii

14 Error messages

UNIFACE V7.2.05

viii (Oct 1999)

 UNIFACE V7.2

Chapter

ORACLE Driver Guide (Oct 1999) 1

1 Introduction

This module describes versions U3.3, U3.5, U4.0, and U5.0 of the
ORACLE driver. A complete description of compatibility with earlier
driver versions and how to upgrade to the U3.x, U4.0, or U5.0 driver is
provided in chapter 11 Generic database conversion procedure, and
chapter 12 Migrating between U2.x, U3.x, U4.0, and U5.0.

The drivers and the ORACLE versions supported, are shown in table 1-2:

The ORA U3.5 driver has the same functionality as the ORA U3.3 driver,
but they are compiled against two different versions of ORACLE. The
ORA U3.5 driver is compiled against ORACLE8.

Table 1-1 ORACLE driver.

Version information

DBMS version 7.3, 8

UNIFACE version 7.2

Three-letter mnemonic ORA

UNIFACE driver version U3.3, U3.5, U4.0, U5.0

Table 1-2 Version supported.

UNIFACE driver ORACLE version

U3.3 7.3

U3.5 8

U4.0 8

U5.0 8

UNIFACE V7.2

2 (Oct 1999) Introduction

The ORA U3.x, U4.0, and U5.0 drivers differ from each other as follows:

• In ORACLE7.3, using the U3.x driver, large objects were mapped to
the Long or Long Raw data types. However, only one Long or Long
Raw column could be held in any table. Using the U4.0 and U5.0
drivers, this restriction does not apply. The U4.0 and U5.0 drivers
support large objects (LOBs) for segmented fields, using the ORACLE
Character LOB (CLOB) and Binary LOB (BLOB) data types.

• ORA U3.5 is the ‘compatibility driver’. ORA U3.5 allows you to
migrate from ORACLE7 to ORACLE8 without needing to make any
changes to the system.

• The U4.0 driver uses the ORACLE8 OCI functions. This affects any
user accessing ORACLE from 3GL. See chapter 13 Accessing
ORACLE from 3GL for more information.

• The U5.0 driver offers the same functionality as U4.0, but also
enables UNIFACE to run in conjunction with a transaction manager
using the XA Interface.

If you want to upgrade your applications and databases to driver version
U3.x, U4.0, or U5.0, see chapter 12 Migrating between U2.x, U3.x, U4.0,
and U5.0 for more information.

1.1 Important notes on U3.x, U4.0, and U5.0 drivers
When using ORACLE7.x or 8, you should keep the following points in
mind:

• There is no ORT variation of a U3.x, U4.0, or U5.0 driver. The
functionality provided in the ORT variations of earlier drivers is
included in the U3.x ORA driver.

• The U3.x, U4.0, and U5.0 drivers fully support the features in
ORACLE7.

• The U3.3 and U3.5 drivers do not support the new features in
ORACLE7.3 or ORACLE8. The U4.0 and U5.0 drivers incorporate the
new ORACLE8 large object support.

• The U3.x,U4.0, and U5.0 drivers use the ORACLE7 architecture
much more efficiently than the U2.1 driver.

• It is recommended that you use a U3.x,U4.0, or U5.0 driver for all new
development, and that you upgrade current applications and
databases to a U3.x, U4.0, or U5.0 driver. If you use or intend to use
large objects and are using ORACLE8, it is recommended that you

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 3

use a U4.0 or U5.0 driver for new developments. Upgrading existing
applications to use a U4.0 or U5.0 driver involves some work, as
documented in chapter 12 Migrating between U2.x, U3.x, U4.0, and
U5.0. If you are using ORACLE8 but not using large objects, the U4.0
and U5.0 drivers offer no advantages over the U3.5 driver.

• You can use a U3.x driver on a database which previously used the
U2.1 driver, without performing an upgrade. You must, however, first
set a number of U3.x driver options and modify the existing
assignment files. If you do not do this, your application is unable to
use some of the new features provided by a full upgrade. For
information on this procedure, and how to fully upgrade to the U3.x
driver, see chapter 12 Migrating between U2.x, U3.x, U4.0, and U5.0.

• The U5.0 driver should be used only if you plan to use a transaction
manager. If you do not plan to use a transaction manager, use the
U4.0 driver. Since the XA interface is available only on ORACLE
servers, do not use the U5.0 driver on an ORACLE client. It could
cause errors or crashes.

1.2 Features and enhancements
The U3.x drivers support many of the features introduced in ORACLE7.
As mentioned previously, the U3.5 driver is compiled against ORACLE8,
but adds no new functionality while the U4.0 and U5.0 drivers offer
ORACLE8 LOB support.

1.2.1 U3.x drivers

UNIFACE segmented fields are mapped to ORACLE Long and Long Raw
data types. This means that both UNIFACE and non-UNIFACE tools can
access very large ORACLE fields containing text or binary data. Other
large fields are implemented using overflow tables containing Long and
Long Raw fields.

UNIFACE V7.2

4 (Oct 1999) Introduction

1.2.2 U4.0 and U5.0 drivers

UNIFACE segmented fields are mapped to ORACLE CLOB and BLOB
data types. This means that both UNIFACE and non-UNIFACE tools can
access very large ORACLE fields containing text or binary data.
Similarly to the U3.x drivers, other large fields are implemented using
overflow tables containing Long and Long Raw fields.

The U5.0 driver enables the use of transaction managers with
UNIFACE.

1.2.3 Stored packages

The driver creates stored packages which it uses to improve performance
when accessing the database.

1.2.4 Statement caching and cursor management

Statement caching and cursor management were completely redesigned
for the U3.x driver to improve the performance involved in statement
parsing and reduce client/server communication overhead.

i
Note: Overhead, as it is used in this document, refers to resources (usually
processing time) consumed for purposes which are incidental, but
necessary.

The U4.0 and U5.0 drivers retain the U3.x design as much as possible,
but replace cursor management with handle and descriptor
management. The U3.x, U4.0, and U5.0 drivers have been made more
efficient in the following ways:

• The driver maintains a cache of the most recently used SQL and
PL/SQL statements. This reduces both the number of parse calls and
improves the client/server performance.

• The driver uses the ORACLE combined execute/fetch feature.
• Unnecessary rebinding of placeholders is avoided wherever possible.
• When stored packages are used, client/server communication is

reduced considerably. A stored package requires the client/server
overhead of only one statement, but it contains many I/O requests.

• The query generated for the selectdb Proc statement is cached.
• Deferred parsing is used.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 5

You can see significant performance improvements when:

• SQL*Net is used.
• Your application accesses many different tables with a variety of I/O

requests.

1.2.5 Improvements in referential integrity implementation

Both the lookup Proc statement and the existence check used for the
implementation of referential integrity are more efficient in the current
drivers than the U2.x drivers. This means that data transport from the
ORACLE server to the ORA driver no longer occurs.

1.2.6 More storage formats supported

Both the variable-length Varchar2 and the fixed-length Char storage
formats are now supported using the VC/VU and the C/U packing codes,
respectively.

1.2.7 ORACLE wildcard characters in retrieve profiles

The driver uses the ESCAPE SQL clause with the LIKE operator to force
the correct interpretation of ORACLE wildcard characters which have
been used as literal characters in UNIFACE retrieve profiles.

1.2.8 Mapping of candidate keys

UNIFACE candidate keys are mapped to the Unique Key constraint
instead of to unique indexes.

1.2.9 Number of concurrent logon paths

The maximum number of concurrent logon paths to ORACLE has been
increased from four to a theoretical maximum of 32,767.

UNIFACE V7.2

6 (Oct 1999) Introduction

1.2.10 Use of ORACLE array fetching

ORACLE array fetching is now used wherever possible. Using it
improves the client/server communication performance. This is
particularly important when using SQL*Net. You can configure the
array size using the driver options.

1.2.11 Step size configuration

You can now use a driver option to configure the step size of the
UNIFACE stepped hitlist mechanism.

1.2.12 Support for ORACLE automatic logons

UNIFACE applications can now log on to ORACLE using the operating
system user identification, instead of supplying a user name and
password in the UNIFACE logon path information.

1.2.13 3GL services

Using the U3.x driver, your user-defined 3GL can access ORACLE using
the Pro*C precompiler interface on the same logon path as the ORA
driver. You can use both the Pro*C precompiler and the OCI interface in
one application to access ORACLE.

Using the U4.0 and U5.0 drivers, you can use the OCI interface to access
ORACLE on the same path as the ORA driver, but not the Pro*C
precompiler.

1.2.14 Other features and enhancements

As well as those already mentioned in this section, the following features
and enhancements are now available:

• The driver generates the optimizer hint FIRST_ROWS whenever
appropriate.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 7

• You can now change the value of the NLS_DECIMAL_CHARACTERS
parameter within ORACLE.

• A value can be returned from PL/SQL statements in the sql Proc
instruction and the SQL Workbench, but only if it is possible to
convert it to the Varchar2 storage format.

• UNIFACE encloses identifiers in SQL and PL/SQL statements in
double quotation marks ("). This allows you to use ORACLE reserved
words for entity and field names in the application model, and it
improves the portability of UNIFACE applications across DBMSs.
For example, you may have developed your application with
SYBASE, without paying attention to the ORACLE reserved words.
It is recommended, however, that you avoid using ORACLE reserved
words wherever possible.

1.3 ORACLE products supported
UNIFACE supports the ORACLE RDBMS, as well as the database
options shown in table 1-3:

UNIFACE has the following extra functionality when it is connected to
an ORACLE server with the Procedural option:

• UNIFACE creates and uses stored packages which improve
performance.

• PL/SQL (including stored procedure calls) can be used in the SQL
Workbench and in the sql Proc instruction.

The functionality enabled by the Distributed option and the Parallel
server option is transparent to UNIFACE.

Both version 1 and version 2 of SQL*Net are supported by UNIFACE.

Table 1-3 ORACLE options supported by UNIFACE.

ORACLE product Required Supported Recommended

Procedural option No Yes Yes

Distributed option No Yes No

Parallel server No Yes No

UNIFACE V7.2

8 (Oct 1999) Introduction

1.3.1 The Pro*C product

You must install the Pro*C product before you can use UNIFACE with
ORACLE. ORACLE7.3 and 8 use Pro*C 2.2.x. In particular, you should
make sure that the following are present:

• The Pro*C libraries to which UNIFACE links.
• The link utility or link description files for the operating system (for

example, loutl.com for Alpha OpenVMS and makefiles on UNIX).
The UNIFACE installation program analyzes these files to determine
the link information it needs.

User-defined 3GL can use both the precompiler interface and the
ORACLE Call Interface (OCI).

i
Note: As described above, you must have the Pro*C libraries and the
relevant link description files before you can use UNIFACE with
ORACLE7. It is not necessary, however, to install the Pro*C precompiler
interface. See your ORACLE documentation for more information on how
to achieve this.

1.4 ORACLE products not supported
The following ORACLE products are not supported by UNIFACE:

• SQL*Module 3GL
• SQL*Connect
• Trusted ORACLE

 UNIFACE V7.2

Chapter

ORACLE Driver Guide (Oct 1999) 9

2 Installation

2.1 SQL scripts for creating the Application Objects Repository

The SQL scripts shown in table 2-1 are available in the UNIFACE
installation directory and can be used to create the Repository in
ORACLE:

Table 2-1 SQL scripts for creating the Repository in ORACLE. part 1 of 2

Application Model SQL script Description

DICT ora3xdt.sql Create table and procedures

DICT ora3xdc.sql Create referential integrity

DICT ora3xdv.sql Verify referential integrity

DICT ora3xdd.sql Drop referential integrity

PRINTER ora3xpt.sql Create table and procedures

PRINTER ora3xpc.sql Create referential integrity

PRINTER ora3xpv.sql Verify referential integrity

PRINTER ora3xpd.sql Drop referential integrity

SYSENV ora3xst.sql Create table and procedures

SYSENV ora3xsc.sql Create referential integrity

SYSENV ora3xsv.sql Verify referential integrity

SYSENV ora3xsd.sql Drop referential integrity

TEXT ora3xtt.sql Create table and procedures

TEXT ora3xtc.sql Create referential integrity

TEXT ora3xtv.sql Verify referential integrity

UNIFACE V7.2

10 (Oct 1999) Installation

You cannot use these files when one of the following driver options is set
because the Repository does not support these mappings:

• u2 default mapping
• u2 enhanced_mapping
• u2 enhanced_mapping_2

If you use ora3xdt.sql with the following driver options set, you must
review and edit the file as described:

• disable packages–Remove the CREATE or REPLACE PACKAGE
statements from the file, or just ignore the packages. If the ORACLE
server does not have the Procedural Database option, you must
remove the CREATE or REPLACE PACKAGE statements.

• map fixed length to variable–Change all Char columns to
Varchar2.

• disable hint first_rows–Remove the hint from the package
bodies in the file, or just ignore the hints.

You may set all other driver options when using ora3xdt.sql.

The ora3xloa.sql is also provided to create a view for the
implementation of the Load Definitions utility. See section 2.2.3 Load
Definitions utility for more information.

TEXT ora3xtd.sql Drop referential integrity

UVCS ora3xut.sql Create table and procedures

UVCS ora3xuc.sql Create referential integrity

UVCS ora3xuv.sql Verify referential integrity

UVCS ora3xud.sql Drop referential integrity

Table 2-1 SQL scripts for creating the Repository in ORACLE. part 2 of 2

Application Model SQL script Description

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 11

2.2 Utilities

2.2.1 Create Table utility

When you run the Create Table utility (Deployment–>Database
Utilities–>Create Table), it generates an SQL script to create tables,
indexes, stored package specifications, and stored package bodies.
Scripts generated by the Create Table utility are correctly formatted for
use with the ORACLE utilities SQL*Plus and SQL*DBA.

The effect of driver options

When the driver option disable packages is set, the SQL script
generated by the Create Table utility does not create stored package
specifications and stored package bodies. Use this option when
generating SQL scripts for ORACLE servers without the Procedural
option.

When the driver option upgrade packages is set, the generated SQL
script creates only the stored package specifications and stored package
bodies, and does not create any other schema objects. This option is set
when performing the package upgrade procedure. See section 6.5
Upgrading the stored packages, for more information on the package
upgrade procedure.

i
Note: Schema refers to the database design, that is, its structure.
UNIFACE uses an entity schema.

2.2.2 Create Script utility

The Create Script form can be used to generate the SQL scripts required
to perform the following:

• Create the DBMS referential integrity controls.
• Drop the DBMS referential integrity controls.
• Verify the referential integrity by checking for unlinked foreign keys

which are not NULL.

For more information on the Create Script form, see the UNIFACE
online help.

UNIFACE V7.2

12 (Oct 1999) Installation

i
Note: The Create Script utility does not perform a referential integrity
check on cascading and restricted relationships that check the
relationship constraints. This is because ORACLE checks referential
integrity constraints when the relationships are created.

2.2.3 Load Definitions utility

The Load Definitions utility (Goto Administration–>Exchange
Models–>Load Definitions) loads the definitions of entities, fields, and
keys.

By default with the ORA driver, the Load Definitions utility loads tables,
but not views. If you want to load both tables and views, do the following:

1. Run the ora3xloa.sql script, which is available in the installation
directory. The script creates a view which enables UNIFACE to load
both tables and views. This view must be present in every ORACLE
schema on which you want to run the Load Definitions utility. You
can accomplish this in one of three ways:

• Create the view in every schema.
• Create the view in one schema, and create a public synonym for

the view.
• Create the view in one schema, and create private synonyms for

the view in the schemas on which you want to run the Load
Definitions utility.

2. Add the following line to the idf.asn assignment file:
USER_TABLES.ORA6 = UNIFACE_TABLES.*

Even though ORA6 is used in the line above, this line is applicable
both to ORACLE6 (with the U2.0 ORA/ORT driver) and to
ORACLE7.3 and 8. You may also specify this assignment in the
usys.asn assignment file in the USYS directory (or psys.asn in the
PSYS directory or psv.asn when you are accessing ORACLE via
PolyServer).

3. Ensure that the logon path $ORA is defined in the assignment file.
This is necessary when loading the schema objects of the user
specified in this logon path.

4. Run the Load Definitions utility on the logon path $ORA.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 13

The Load Definitions utility loads tables as modifiable entities, and it
loads views as non-modifiable entities. However, some views are
modifiable. For this reason, you should review the application model
which is loaded by the Load Definitions utility. See section 3.3.8 Views,
for more information on modifiable views.

Mapping ORACLE storage formats

The Load Definitions utility maps ORACLE storage formats to
UNIFACE data types and packing codes as shown in table 2-2:

Fields which have the data type SS will also be formatted with a syntax
of FUL. This means that multibyte characters can be included in these
fields.

If you are not using the U3.x default packing code mapping, you should
review the application model which is loaded by the Load Definitions
utility. See section 8.2 Modify packing code mapping, for more
information on the different ways packing codes can be mapped by the
U3.x driver.

Table 2-2 How the Load Definitions utility maps ORACLE storage formats.

ORACLE UNIFACE data type, packing code

Char SS, Cn

Varchar2 SS, VCn

Varchar SS, VCn

Number N, Cn (Precision defined, but no scaling)

N, Ci.j (Precision and scaling defined)

F, F8 (No precision or scaling defined)

Date E, E

Long SS, SC*

Long Raw R, SR*

Rowid Not supported

Mlslabel Not supported

Raw Mlslabel Not supported

UNIFACE V7.2

14 (Oct 1999) Installation

Loading primary keys, candidate keys, and indexes

The Load Definitions utility loads primary keys in different ways
depending on the defined constraints. The primary keys are loaded as
follows:

• If ORACLE primary key constraints are defined, they are always
loaded as primary keys, regardless of whether the ORACLE primary
key constraint is in an enabled or disabled state.

• If no primary key constraint is defined, but one or more unique
indexes or enabled unique key constraints are defined, one of them is
arbitrarily chosen to be the primary key.

• If there are no primary key or enabled unique key constraints, and no
unique indexes defined in ORACLE, no primary key is loaded.

ORACLE unique indexes and enabled unique key constraints are loaded
as candidate keys by the Load Definitions utility. The only exception to
this is when a unique index or an enabled unique key constraint has
already been chosen to be the primary key, as described above. Disabled
unique key constraints are not loaded.

ORACLE nonunique indexes are loaded as indexes by the Load
Definitions utility.

 UNIFACE V7.2

Chapter

ORACLE Driver Guide (Oct 1999) 15

3 System environment

3.1 Networking considerations
You can use either PolyServer or SQL*Net for network connectivity.
Your choice of SQL*Net V1 or SQL*Net V2 is transparent to UNIFACE.
See section 4.2.2 Logon path specification for more information on
SQL*Net logon path specifications. See the UNIFACE Configuration
Guide and the UNIFACE Reference Manual for more information on
PolyServer logon path specifications.

SQL*Net

If you use SQL*Net, you must consider the following points to avoid
problems arising from different data representations on machines with
different architectures:

• Use the default packing code mapping of the U3.x driver, or set the
driver option u2 enhanced_mapping_2. Do not specify the driver
options u2 default mapping or u2 enhanced_mapping.

• Install UNIFACE with a system-independent byte sequence. For
more information see the Installation Guide for your environment.

• It is recommended that you define the ORACLE client character set.
It is possible that the default character set defined in your ORACLE
client environment is different from the database to which your
application connects. In this case, the character set in your ORACLE
client environment should be set to NLS_LANG.

UNIFACE V7.2

16 (Oct 1999) System environment

For example, you should use the NLS_LANG environment variable
whenever the database to which your application connects uses a
different character set than the default set defined in your ORACLE
client environment. See section 4.8 ORACLE character sets for more
information on how to specify a character set.

3.2 Necessary permissions
When developing a UNIFACE application in ORACLE, the developer
must have the privileges to connect to the database, to create tables and
to create procedures. These privileges are necessary both when schema
objects are created ‘on the fly’, and when scripts generated by the Create
Table utility are executed.

Once you have finished developing your application model, and all tables
and packages have been created, you no longer need the CREATE TABLE
and CREATE PROCEDURE privileges. If the ORACLE RDBMS does not
have the Procedural option, or you set the disable packages driver
option, the CREATE PROCEDURE privilege is not required. It is, however,
recommended.

Your Database Administrator (DBA) should create a
UNIFACE_DEVELOPER role, which is granted to all users working with
the UNIFACE development environment. This role can be created by
issuing the following SQL statements:
CREATE ROLE UNIFACE_DEVELOPER;
GRANT CREATE SESSION, CREATE TABLE, CREATE PROCEDURE TO UNIFACE_DEVELOPER;
GRANT UNIFACE_DEVELOPER TO user_name1, user_name2;

where user_name1 and user_name2 are the users who will be granted the
same privileges as the UNIFACE_DEVELOPER role. It is recommended
that you grant the CREATE VIEW, CREATE SEQUENCE, ALTER SESSION,
CREATE TRIGGER, CREATE DATABASE LINK and CREATE SYNONYM
privileges to the UNIFACE_DEVELOPER role.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 17

3.3 Records, indexes, tables, and fields
UNIFACE can access and create the following ORACLE schema objects:

• Tables with columns and constraints
• Indexes
• Stored package specifications and stored package bodies

UNIFACE can also access views which have been defined in the
application model.

Table 3-1 shows the maximums which apply to a UNIFACE application
in ORACLE:

3.3.1 Location of schema objects

UNIFACE creates and accesses all schema objects1 in the schema of the
user specified in the logon path, unless you specify otherwise. UNIFACE
allows you to access schema objects in another schema.

Table 3-1 UNIFACE application maximum values in ORACLE.

What Maximum Comments

Fields per record 254 fields UNIFACE only supports 253 fields
in modifiable tables.

Length of record Unlimited A UNIFACE record (not including
segmented fields) has a maximum
of 8192 bytes.

Fields per key 16 fields

Number of indexes Unlimited

Maximum length of
key

Unlimited A UNIFACE record has a maximum
of 8192 bytes.

Maximum length of a
field

Not applicable Dependent on the storage format.

SQL statement length 64 kilobytes UNIFACE has a maximum of
10 kilobytes, except for the Create
Table utility.

1. The ‘schema’ referred to is the ORACLE schema.

UNIFACE V7.2

18 (Oct 1999) System environment

This can be accomplished by:

• Setting up synonyms in the schemas which are accessed by
UNIFACE, or

• Setting up public synonyms.

i
Note: These are the only ways that you can access schema objects in
another schema when using UNIFACE.

3.3.2 Naming rules for schema objects

The following rules apply when naming schema objects:

1. The maximum length for identifiers in ORACLE is 30 characters.
When UNIFACE constructs object names, it automatically truncates
entity and field names from the application model to comply with the
ORACLE limit. For example, index number 11 of the table named
LONG_NAME_OF_THIRTY_CHARACTERS, is named by UNIFACE as
LONG_NAME_OF_THIRTY_CHARACTI11. UNIFACE uses this
truncation method when it constructs names for the following objects:

• Tables
• Columns
• Primary and Unique key constraints
• Indexes
• Package specifications and package bodies
• Procedure parameters
• Placeholders

Ensure that the first 26 characters of all the entity and field names
are unique, because they will be truncated somewhere after that
point to comply with the ORACLE restriction.

2. Letters, numbers, and underscores are all allowed in entity and field
names in the application model, however, the first character must be
a letter. If you want to use an object which has a mixed-case name,
you must create a synonym for that object in ORACLE.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 19

For example, if you want to access an ORACLE table called Dept, use
the name DEPT in the application model and create a synonym by
issuing the following statement in the SQL Workbench:
CREATE SYNONYM DEPT FOR "Dept"

3. UNIFACE encloses identifiers in SQL and PL/SQL statements in
double quotation marks (""). This allows you to use ORACLE
reserved words for entity and field names in the application model,
and it improves the portability of UNIFACE applications across
DBMSs.

It is recommended that you avoid using ORACLE reserved words
wherever possible.

3.3.3 Primary and candidate keys

Primary Key constraints

The U3.x driver creates a named Primary Key constraint for the primary
key defined in the application model. It does this when creating a table
with the Create Table utility and when creating one on the fly. The
constraint name is:

table_name Pindex_number

where table_name is the name of the table concerned, and index_number
is the identification number of the index in UNIFACE. For a primary key
in UNIFACE, index_number is always one.

Table 3-2 Rules for keys.

Rules for keys Required by DBMS

Must be contiguous No
Primary and candidate keys allowed to
overlap

Yes

Primary key mandatory No (but is required by UNIFACE)
Candidate keys mandatory No

UNIFACE V7.2

20 (Oct 1999) System environment

The driver creates a Unique Key constraint for every candidate key in the
application model. The constraint name is:

table_name Cindex_number

where table_name is the name of the table concerned, and index_number
is the identification number of the index in UNIFACE. UNIFACE
candidate key fields are mandatory, but the ORACLE Unique Key
constraint does not enforce the Not Null constraint on the fields in the
Unique Key. For this reason, UNIFACE creates the Not Null constraint
for all candidate key fields which are not also in the primary key.

Storage formats allowed for key fields

The Char, Varchar2, Varchar, Date, Number, and Raw storage formats
are allowed for key fields.

3.3.4 Indexes

UNIFACE creates an ORACLE index for every index in the application
model. The ORACLE indexes are named as follows:

table_nameIindex_number

where table_name is the name of the table concerned, and index_number
is the identification number of the index in UNIFACE.

Storage formats allowed for index fields

The Char, Varchar2, Varchar, Date, Number, and Raw storage formats
are allowed for index fields.

3.3.5 Tables

Table creation

UNIFACE creates tables, columns, and both Primary and Unique Key
constraints in ORACLE. This happens both on the fly and when you use
the Create Table utility. It is recommended that you use the Create Table
utility, and then the ORACLE SQL*Plus or SQL*DBA utility to execute
the generated script.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 21

Before accessing a table, UNIFACE first checks whether it exists by
parsing one of the following queries:

SELECT field_name1, field_name2, ... FROM table_name

or,

SELECT 0 FROM table_name

The first query is used if you have not set the disable checks option in
the USYS$ORA_PARAMS assignment. UNIFACE checks whether the table
exists, and also checks whether the ORACLE storage formats of all
columns are consistent with the information in the application model and
driver options which change mapping behavior. This is less efficient than
the second query, which is used if you have set the disable checks
option in the USYS$ORA_PARAMS assignment. These queries are only
parsed; they are not actually executed, and no data is fetched.

If UNIFACE finds that an expected table does not exist, it creates the
table with all columns, Primary Key and Unique Key constraints,
indexes and, optionally, the associated package specification and
package body. If UNIFACE finds that the table exists, but some of the
column storage formats are incorrect, it generates an ORA driver error.

For example, assume you have an ORACLE table called MYTABLE with a
column called S_C, which has data type S and packing code C. This table
was originally created with default driver options and now you attempt
to access it with the driver option map fixed length to variable set.
The driver generates the following error:
ORACLE Driver Error [-80]: Column has incorrect ORACLE storage format:
Table MYTABLE, Column S_C, expected storage format VARCHAR2, actual storage
format is CHAR.

Overflow tables

If UNIFACE variable-length techniques are used in an entity, both a
base table and an overflow table are created. The name of the base table
is the name of the entity in the application model (or the name assigned
by means of entity assignment in the assignment file). The name of the
overflow table is the name of the base table, prefixed by the character O.
This means that when you are using UNIFACE variable-length
techniques, you cannot define two entities where the name of one is the
name of the other prefixed by the letter O.

UNIFACE V7.2

22 (Oct 1999) System environment

i
Note: The name of an overflow table is the name of the base table prefixed
by an O. If, however, the entity name contains one or more dollar signs ($)
or hash marks (#) (which is only possible via entity assignment, but not in
the application model), the O is inserted directly after the last $ or #. For
example, with the entity assignment MYENTITY.MYSCHEMA =
$ORA:NEW$NAME, the base table is named NEW$NAME and the overflow
table is named NEW$ONAME.

The primary key in the overflow table is made up of the primary key
fields from the base table and a field identifying the overflow segment.

3.3.6 Fields

Mandatory fields are created with the Not Null constraint, unless they
are part of the primary key. This is because Primary Key fields in
ORACLE implicitly have the Not Null constraint.

The way UNIFACE packing codes are mapped to ORACLE storage
formats is described in chapter 8 Data types and packing codes.

3.3.7 Definition dependency

The definitions of ORACLE tables and indexes are taken from the
definitions of entities in the UNIFACE application model. If you change
the application model entity definitions after the ORACLE tables and
indexes have been created, or after the generation of the SQL script to
create those tables and indexes, you may have to re-create or alter those
tables and indexes. For this reason, you must keep track of the
dependencies between the UNIFACE application model and the schema
objects in ORACLE.

3.3.8 Views

UNIFACE can access views in ORACLE, if those views have been
correctly described in the application model. You must use an
appropriate combination of UNIFACE data type and packing code to
describe the storage format of every column in the view. This is
particularly important when a select list expression in a view is an SQL
function.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 23

For example, substrings returned from the SUBSTR() function are
fixed-length strings returned with trailing spaces. Such a select list item
is equivalent to a Char column, and not to a Varchar2 column.
Alternatively, you can use the RTRIM() SQL function in the view to
remove trailing spaces and describe the select list item as a Varchar2
column.

When you define a view in the application model, you must make sure
that the fields you define have the same names as in the alias list of the
ORACLE view definition. See your ORACLE documentation (the
CREATE VIEW statement) for more information. If a view is not
modifiable, you must mark the entity as non-modifiable in the
application model.

UNIFACE uses Rowids with modifiable entities. If a view is defined as a
join expression or it is defined using a set operator (for example, UNION),
the Rowid pseudo column cannot be selected. In that case, you must mark
the view as non-modifiable in the application model. This is not an extra
limitation, because such views are not modifiable in ORACLE. If you do
not mark a view with a join expression or set operator as non-modifiable
in the application model, UNIFACE attempts to use Rowids, and
ORACLE generates the following error:
ORA-1445: cannot select ROWID from view with more than one table

UNIFACE uses stored packages with modifiable entities (provided the
entity meets a number of other requirements, as described in chapter 6
Stored packages).

If a view is modifiable, you can choose between the following alternatives:

• Create the associated package for the view. For this purpose, you
must first describe the entity in the application model, set the driver
option upgrade packages, and run the Create Table utility for the
entity describing the view.

• Set the driver option ignore missing packages.
• Set the driver option disable packages.

UNIFACE V7.2

24 (Oct 1999) System environment

 UNIFACE V7.2

Chapter

ORACLE Driver Guide (Oct 1999) 25

4 Configuring

4.1 Driver assignments for UNIFACE system information
ORACLE is a good database management system to use for UNIFACE
system information. In other words, $IDF, $UUU, and $SYS can all be
assigned to ORACLE.

You must, however, keep the following considerations in mind when
storing the Application Objects Repository (Repository) in ORACLE:

• Use the SQL scripts provided with the installation kit to create the
Repository in ORACLE. For information on building the Repository,
see section 2.1 SQL scripts for creating the Application Objects
Repository.

• The dictionary uses variable-length storage techniques with
platform-specific data formats. For this reason, you must install
UNIFACE with the independent byte order option set if you
want to access the dictionary via SQL*Net.

• You may store the Repository in ORACLE only when the default
packing code mapping of the U3.x driver is used. The driver option
disable segmented fields may be set, as there are no segmented
fields in the dictionary. The driver option map fixed length to
variable may be set, but you must then review and edit the
ora3xdt.sql file before creating the repository.

• UNIFACE assigns a special meaning to some characters in Varchar2,
Char and Long fields in the Repository. UNIFACE does not work
correctly if these characters are corrupted when ORACLE converts
character data between character sets.
Define the ORACLE client character set to avoid this problem. You
can do this by using the ORACLE NLS_LANG environment variable.
See chapter 9 System parameters for more information on the

UNIFACE V7.2

26 (Oct 1999) Configuring

NLS_LANG environment variable, and section 4.8 ORACLE character
sets, for more information on the configuration of ORACLE character
sets.

• To improve performance, it is recommended that (if your system
setup can support it) you allow the ORA driver to open between 150
and 250 cursors when accessing the repository in ORACLE. The
amount you need depends on how extensively you use the features of
UNIFACE Seven. See the description of the open cursors driver
option in section 4.6.1 Cursors and statement caching for more
information. When you test forms in UNIFACE Seven, you may want
to allow extra cursors for the tables accessed by those forms. This is
only necessary if you access the test data on the same logon path as
the Repository.

4.2 Paths and logging on
This section describes the following:

• open and close instructions
• Logon path specification
• Concurrent logon paths
• Logon paths and special services for 3GL
• Driver options affecting logon paths

Connection managed by a transaction manager

If the ORA U5.0 driver is configured and a transaction manager (for
example, Encina) is running, the transaction manager controls the
connections (rather than the driver). See the documentation for your
transaction manager for more information.

4.2.1 open and close instructions

Both of these instructions are supported.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 27

4.2.2 Logon path specification

You can specify the logon path to ORACLE in the following ways:

• In the Proc language open statement:
open "{database}|{user_name}|{password}", "path name"

• Interactively in the DBMS Logon form. The logon form only appears
when you have specified a question mark as one or more of the
elements of the logon path specification.

• With the following assignment in the assignment file:
$path_name = ORA:{database}|{user_name}|{password}

The database specification is interpreted by ORACLE, not by UNIFACE.
The database can specify one of the following:

• An ORACLE two-task communication driver supplied with ORACLE.
For example, the pipe driver on UNIX or the Mailbox driver on Alpha
OpenVMS.

• An SQL*Net database specification. See section 3.1 Networking
considerations for more information on SQL*Net.

Refer to your ORACLE documentation for more information on the
syntax of the database specification. ORACLE decides whether to use
SQL*Net V1 or SQL*Net V2, depending on the syntax of the database
specification. Some examples of complete logon path specifications can be
found at the end of this section.

The following are different ways in which you can provide user name and
password information:

• Specify both the user name and password.
• Specify the user name, or the password, or both, as a question mark.

The UNIFACE logon form appears allowing you to enter the missing
information.

• Specify neither user name nor password. In this case, UNIFACE
attempts an automatic logon (also known as default logon, or OPS$
logon). This means logging on to ORACLE using the operating system
user identification. ORACLE supports automatic logon on some
platforms. Whether or not ORACLE supports automatic logon when
using SQL*Net depends on the SQL*Net protocol. See your ORACLE
documentation for more information.

UNIFACE V7.2

28 (Oct 1999) Configuring

Specifying a user name without a password, or specifying a password
without a user name is not valid. If you do this, the ORA driver will
generate the following error:
ORACLE Driver Error [-24]: user name without password, or password without user
name specified.

This error also occurs if you enter an empty user name or password when
the DBMS Logon form pops up.

Identifying errors during logon

If you encounter difficulties with the logon path specification, it is
recommended that you use the following procedure to identify the source
of the problem:

1. Log on to ORACLE using an ORACLE utility available in your
environment. This example shows how to log on with SQL*Plus:
sqlplus user name|password@database
If a problem occurs at this stage, check the ORACLE configuration.

2. Syntactically convert the userid string to a UNIFACE logon path
specification in the assignment file, replacing the password by a
question mark:
$ORA = ORA:database|user name|?

Enter the SQL Workbench and enter a simple SQL query. For
example: SELECT USER FROM DUAL
As soon as you DETAIL, the logon form for the $ORA path pops up.
Enter the password.

If a problem occurs at this stage, check the message frame for error
messages. Then check the relevant environment variables. For
example, ORACLE_HOME, ORACLE_SID and TWO_TASK. See chapter 9
System parameters, for more information.

The following examples show logon path specification in the assignment
file.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 29

Example 1
$ORA = ORA:|scott|tiger

This specifies a logon path to the default database, using the default
communication driver. The user is scott and the password is tiger.
The mechanism for identifying the default database and default
communication driver are specific to the operating system. For example,
on UNIX, the environment variable TWO_TASK, or the combination of
ORACLE_HOME and ORACLE_SID is used.

Refer to your ORACLE documentation for more information.

Example 2
$ORA = ORA:P:|scott|tiger

This specifies a logon path to the default database, using the ORACLE
two-task pipe driver (UNIX).

Example 3
$ORA = ORA:2:|scott|tiger

This specifies a logon path to the default database, using the ORACLE
Mailbox driver (Alpha OpenVMS).

Example 4
$ORA = ORA:t:amsterdam:finance|scott|tiger

This specifies a logon path to the finance database on TCP/IP host
amsterdam, using the SQL*Net V1.2 TCP/IP driver. The syntax is
confusing because both ORACLE and UNIFACE use the colon as a
special character. In this example, the database specification interpreted
by ORACLE is t:amsterdam:finance.

The equivalent userid string with ORACLE tools for this example is:
scott/tiger@t:amsterdam:finance

This complicated userid string shows that it is probably not a good idea
to expect the end user to enter database specifications in the DBMS
Logon form. Define the database specification in the assignment file, or
use the ORACLE environment variable TWO_TASK. It is possible that on
your operating system, ORACLE also supports an alias mechanism to
define the database specifications in a configuration file or environment
variable (for example, SQL*Net on OS/2 and MS-DOS).

UNIFACE V7.2

30 (Oct 1999) Configuring

Example 5
$ORA = ORA:finance|scott|tiger

This specifies a logon path using SQL*Net V2. The database specification
finance must be defined in an SQL*Net V2 configuration file called
TNSNAMES.ORA.

Example 6
$ORA = ORA:|?|?

This assignment causes UNIFACE to display the logon form when the
path $ORA is referenced. The end user can specify the user name and
password but is not allowed to enter a database specification.

Example 7
$ORA = ORA:||

This assignment is equivalent to not assigning $ORA at all; it specifies
an automatic logon to the default database. The logon form will not
display, but UNIFACE attempts an automatic logon to ORACLE when
ORACLE is configured to allow automatic logons.

4.2.3 Concurrent logon paths

UNIFACE supports a theoretical maximum of 32,767 concurrent logon
paths to ORACLE. See also section 4.4.1 Transactions for more
information on transaction control when using multiple logon paths.

It is not possible to open multiple concurrent logon paths using the
ORACLE single-task driver. The single-task driver is only supported on
specific operating systems (for example, OpenVMS), and only when the
application is linked single-task with ORACLE. When a logon path is
opened with the single-task driver, you can open additional concurrent
logon paths using a two-task driver. For example, you can specify the
Mailbox two-task driver as the database in the UNIFACE logon path
specification.

On some systems, it is possible that ORACLE does not support multiple
concurrent logon paths (for example, single-user ORACLE under
MS-DOS on a PC).

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 31

It is not advisable to open many concurrent logon paths. This will
degrade performance, and managing multiple transactions is difficult. If,
however, the application must access multiple databases using multiple
logon paths, opening concurrent logon paths is a better solution than
repeatedly opening and closing a logon path.

If your application requires a second logon path when accessing a global
UOBJ, you should consider the following alternatives which require only
one logon path:

• Set up synonyms in your schema to access the global UOBJ and
arrange for the appropriate privileges to access UOBJ in the central
schema.

• Create a local UOBJ in your schema.

These alternatives speed up the initialization of your application. See the
UNIFACE online help for more information on UOBJ.

In the same way, UNIFACE Seven does not need to open two logon paths
to access the Repositories in an application model.

4.2.4 Logon paths and special services for 3GL

If you are using a U3.x driver, the connection for the first logon path to
ORACLE is created using the Pro*C precompiler interface. The first
logon path is associated with the so-called default connection (created
with EXEC SQL CONNECT without an AT clause).1 This allows user-defined
3GL to access ORACLE on the same logon path as UNIFACE using the
precompiler interface. Accessing ORACLE on the first logon path using
the ORACLE Call Interface (OCI), or creating independent connections
to ORACLE with either the precompiler interface or the OCI is also
supported.

All logon paths except the first logon path are created as independent
non-default connections using the ORACLE Call Interface. These logon
paths are not accessible by user-defined 3GL.

The 3GL service functions UGETUOPENFLAG and UGETULDA are provided
to access ORACLE logon information. Refer to chapter 13 Accessing
ORACLE from 3GL and the 3GL Interface Manual for more information
on these functions.

1. The ‘first logon path’ is either the first logon path to ORACLE, opened since the application was started, or
the first logon path to ORACLE, opened after the previous first logon path was closed.

UNIFACE V7.2

32 (Oct 1999) Configuring

4.2.5 Driver options affecting logon paths

By default, if you are using the U3.x driver, UNIFACE creates the first
connection to ORACLE using the Pro*C precompiler interface. Although
this is completely transparent to most applications, it may cause an
incompatibility with user-defined 3GL which creates the precompiler
default connection.

If the disable precompiler connect driver option is set, UNIFACE
only creates independent non-default connections using the OCI, thereby
allowing user-defined 3GL to create the default connection with the
precompiler interface.

4.3 Retrieving data
This section describes the data retrieval mechanisms supported by
ORACLE.

4.3.1 Retrieve profiles

UNIFACE automatically uses the ESCAPE clause with the LIKE operator
to prevent ORACLE wildcard characters in UNIFACE retrieve profiles
from being interpreted. The backslash character (\) is used as the escape
character. Some examples of UNIFACE retrieve profiles and their
corresponding ORACLE LIKE profile are shown in table 4-1:

Table 4-1 How UNIFACE retrieve profiles are mapped to ORACLE retrieve profiles.

UNIFACE retrieve profile ORACLE LIKE profile

c_c GOLD * c_c%
c_c GOLD * c_c%
c% GOLD *c c\%%c

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 33

Retrieve profiles on character string fields behave differently on fields
with the Char storage format than on fields with the Varchar2 storage
format. For example, when the value UNIFACE is stored in a Char(10)
and a Varchar2(10) field, respectively, the value matches the profile
GOLD *FACE on the Varchar2 field, but not on the Char field. The
reason for this is that the Char field stores trailing spaces, and contains
‘UNIFACE ’ (three trailing spaces). The profile UNI GOLD * matches
on both fields.

As a general rule, retrieve profiles on fixed-length Char fields only give
the expected result if the last non-blank character is the GOLD * profile
character, or if there is no GOLD * profile character in the retrieve
profile.

4.3.2 where clause

The where clause is supported. All text between the double quotation
marks ("") is inserted literally as entered. For example,
read where "EMPNO > 10" results in the where clause:
WHERE (EMPNO > 10) AND (...)

Because the text is inserted literally as entered, values must be entered
in a format acceptable to ORACLE, taking National Language Support
rules into account.

4.3.3 u_where clause

ORACLE handles the u_where clause, but it cannot be applied to Long,
Long Raw, BLOB, and CLOB fields in ORACLE.

4.3.4 order by qualifier

The order by qualifier is supported using both ascending and
descending order, but cannot be applied to Long, Long Raw, BLOB, and
CLOB fields. Sorting is always performed by ORACLE.

UNIFACE V7.2

34 (Oct 1999) Configuring

4.3.5 selectdb instruction

ORACLE handles this instruction, but it cannot be applied to Long and
Long Raw fields in ORACLE.

4.4 U3.x transaction control
This section describes the ORA driver’s transaction handling when using
a U3.x or the U4.0 driver.

If you are using the U5.0 driver, transaction management may be
performed by a separate transaction manager using the XA Interface.
You should consult the documentation for your transaction manager for
information on the transaction manager behavior.

4.4.1 Transactions

A transaction consists of all Data Manipulation Language (DML)
statements occurring on one logon path (ORACLE session). A transaction
ends when a commit or rollback is performed on the logon path, or
when the logon path is closed. If there are multiple concurrent logon
paths open to ORACLE, there is one independent transaction on every
logon path.

If you are using the U5.0 driver, and a transaction manager is running,
the ORA driver does not perform any transaction management, and the
rest of this section is not applicable.

ORACLE commits a transaction whenever a schema object is created.
This can disrupt the transaction management of your applications. It is
therefore, recommended that you use the Create Table utility, instead of
creating objects on the fly.

If your application must access data in multiple ORACLE databases, you
can achieve this in one of the following ways:

• Configure the ORACLE databases in a distributed database. This
requires SQL*Net and the optional Distributed Database Extension.
You can then access the distributed database on one logon path by
setting up synonyms in one of the databases to allow UNIFACE to
access objects in the other databases. In this case, the ORACLE

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 35

distributed database ensures that all DML operations are in one
transaction.

• Access the ORACLE databases on two or more logon paths, using
either SQL*Net or PolyServer. In this case, DML operations on
different logon paths are not in one transaction. There is one
independent transaction on every logon path.

Similarly, if your application has to access data in multiple schemas in
the same database, you can achieve this in one of the following ways:

• Access all schemas on one logon path by setting up synonyms in one
of the schemas to allow UNIFACE to access objects in the other
schemas. In this case, ORACLE ensures that all DML operations are
in one transaction.

• Access the ORACLE database on two or more logon paths. In this
case, DML operations on different logon paths are not in one
transaction. There is one independent transaction on every logon
path.

4.4.2 Locking

Types of locking supported

All UNIFACE locking types are supported: optimistic, cautious, and
paranoid. Refer to the UNIFACE Reference Manual for an explanation of
these types.

UNIFACE locks individual rows only. It does this by using the
SELECT ... FOR UPDATE NOWAIT SQL statement.

Rows are unlocked when the commit or rollback instructions are
executed, when the application ends, or when the logon path to ORACLE
is closed.

Default locking type

The default locking type is cautious. You can override cautious locking
for individual entities by specifying optimistic locking in the Entity
definition form.

UNIFACE V7.2

36 (Oct 1999) Configuring

read/lock instruction

You can specify paranoid locking by using the read/lock Proc
instruction in the Read trigger of an entity.

U_VERSION

The ORA driver supports the U_VERSION mechanism to improve locking
performance. Stored packages created by UNIFACE support requests for
optimistic locking with U_VERSION.

4.4.3 commit and rollback

Both of these instructions are supported by ORACLE. There are no
special considerations.

Two-phase commit

This is supported by ORACLE if the optional Distributed Database
Extension is used. Because ORACLE itself uses two-phase commit, the
UNIFACE two-phase commit mechanism is not used; you do not need to
use the setting $TWO_PHASE_COMMIT. Two-phase commit is completely
transparent to UNIFACE and is used automatically by ORACLE when
required. All DML statements which occur on one logon path to an
ORACLE distributed database are in one transaction.

4.5 Implementation of segmented interfaces
This section provides some background information on the
implementation of the segmented field interface with ORACLE (BLOB
support). You may find this information useful when faced with the
alternatives of using UNIFACE proprietary variable-length techniques
(overflow tables), or using the segmented field interface. The U4.0 and
U5.0 drivers implement the segmented field interface in a different way
to the U3.x drivers. The behavior of both drivers is described below.

UNIFACE uses segmented I/O provided by ORACLE when reading a
field with a segmented interface. There are no special considerations.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 37

The U4.0 and U5.0 drivers implement BLOBs as CLOB and BLOB data
types and which are also written to the database in segments. These data
types were introduced in ORACLE8.

The U3.x drivers implement BLOBs as LONG and LONG RAW data
types. However, for this data type, ORACLE does not provide segmented
write capabilities. To write data into a Long or Long Raw field using the
segmented interface, UNIFACE must allocate a contiguous storage area
as large as the field to be written using operating-system dynamic
memory allocation. This is subject to platform-specific memory
limitations. The memory is allocated on the client platform when
SQL*Net is used, and on the server platform when PolyServer is used.
The memory allocation occurs when the segmented field is being written,
and memory is released immediately afterwards.

!
Caution: If you use segmented fields on a platform more restrictive than a
32-bit virtual memory operating system, you can encounter severe
restrictions when attempting to update or insert a record. Furthermore,
the update or insert of large segmented fields can cause other activities on
your system to fail. You should consider using the UNIFACE proprietary
variable-length techniques instead of the segmented field interface.

If the amount of memory required to write the segmented field cannot be
allocated, the following errors can occur:
ORACLE Driver Error[-75]: Actual length of LONG or LONG RAW data exceeds
platform specific memory limitation.

ORACLE Driver Error[-4]: Dynamic memory allocation failed.

There is no solution to the first error. However, if the second error occurs,
increasing available memory can solve the problem (for example,
increase storage available for paging and swapping with virtual memory
operating systems).

If the limitation described above is unacceptable, consider using
UNIFACE proprietary variable-length techniques (overflow tables),
instead of the segmented interface. Set the disable segmented field
driver option to achieve this. See section 8.2 Modify packing code
mapping for more information.

UNIFACE V7.2

38 (Oct 1999) Configuring

4.6 Performance issues
This section describes how to improve the performance of your ORACLE
database with UNIFACE. Read this section in combination with the
performance-tuning section in your ORACLE documentation.

4.6.1 Cursors and statement caching

This section describes the statement cache which is managed by
UNIFACE, and provides some guidelines for setting the open cursors
driver option.

Statement cache

For each statement issued to ORACLE, the U3.x drivers open a cursor
while the U4.0 and U5.0 drivers open a statement handle. Both terms
refer to placeholders. In both cases, the action is managed by UNIFACE
in a statement cache, as described below. This section uses the generic
term, statement marker, to refer to a cursor (in U3.x) or statement handle
(in U4.0 and U5.0).

UNIFACE manages a fully associative Least Recently Used (LRU) cache
of SQL and PL/SQL statements. When a statement occurs for the first
time, SQL or PL/SQL is generated, parsed on an ORACLE statement
marker, and placeholders are bound. The statement marker remains
open. When the same statement recurs, there is no need to generate and
parse (or prepare) it again, and in many circumstances placeholder
rebinding is not required. The statement marker is just reexecuted. This
cache is located in the ORA driver, and it is completely independent from
the cache of shared SQL areas in the ORACLE server. UNIFACE
manages one independent statement cache per logon path to ORACLE.
The statement markers in a cache are closed when the logon path to
ORACLE is closed.

If a statement is not yet in the cache, and the maximum number of open
statement markers allowed by the open cursors driver option has not
been reached, UNIFACE opens a new statement marker for that
statement. If the maximum number of open statement markers has been
reached, the statement marker which has been used least recently is
chosen for reparsing. The statement which was associated with this
statement marker is removed from the cache. The new statement is
generated and parsed on the selected statement marker.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 39

i
Note: The purpose of the statement cache managed by UNIFACE is to
reduce the number of parse calls. The purpose of the cache of shared SQL
areas managed by the ORACLE server is to reduce the number of parse
operations. See your ORACLE documentation for an explanation of the
difference between parse calls and parse operations.

The statement cache improves performance in the following ways:

• The cache reduces the number of parse calls.
• The cache reduces the client/server communication overhead, which

is particularly important when using SQL*Net.

The effectiveness of the cache is further improved when UNIFACE uses
stored packages, as only one procedure call needs to be cached for the
implementation of multiple I/O requests.

The UNIFACE statement cache mechanism is not used for statements
issued in the SQL Workbench and the sql Proc instruction.

SQL and PL/SQL statements generated by the driver use placeholders
rather than actual data in the statement. This improves the reusability
of the statement, as there is no need for reparsing when the only thing
that changes is the data. UNIFACE limits the number of statements in
the cache which have a user-defined where clause (the Proc read where
clause), as such statements can include actual data, and the majority of
them will not be reexecuted.

In exceptional cases, UNIFACE has to reparse an SQL query. If the
number of rows fetched is less than the number requested by UNIFACE,
and at the same time UNIFACE is using all of the ORACLE array
fetching, deferred parsing and combined execute/fetch features,
ORACLE considers the parsed statement not valid. UNIFACE must then
reparse it the next time it needs to be executed. UNIFACE avoids this
problem in some cases by using heuristic methods to estimate the
number of rows to be fetched—it is then possible to use nondeferred
parsing.

You can observe the behavior of the cache to a limited extent by
monitoring SQL in the message frame (with the /pri=32 command line
switch). SQL or PL/SQL statements only appear in the message frame
when they are generated. When a statement in the cache is reexecuted,
no text is added to the message frame. If you want to observe the LRU
caching behavior, you should set the open cursors driver option to a
very low number.

UNIFACE V7.2

40 (Oct 1999) Configuring

Alternatively, you can obtain statistics on the effectiveness of the
statement cache by using ORACLE’s tracing facilities. Refer to your
ORACLE documentation for more information.

Driver options affecting the use of cursors

The driver option open cursors specifies the maximum number of
statement markers or statements per logon path that UNIFACE is
allowed to open. The default value is 45. The absolute minimum value is
four.

There is no absolute maximum value, as far as UNIFACE is concerned.
The maximum value is an initialization parameter of the ORACLE
server to which the application connects. When the open cursors value
in the USYS$ORA_PARAMS assignment exceeds the maximum number of
statement markers allowed by the ORACLE server, ORACLE can
generate an error, but this only happens once UNIFACE has actually
opened the maximum number of statement markers.

Recursive statement markers might also be opened by ORACLE on
behalf of the application. (See your ORACLE documentation on
‘recursive calls’ and ‘recursive cursors’ for more information.) UNIFACE
cannot, therefore, guarantee that the maximum number of statement
markers allowed by the ORACLE server is not exceeded:
ORA-1000 Maximum open cursors exceeded

This error is most likely to occur if the UNIFACE statement cache has
already opened its maximum number of statement markers, and a table
is created on the fly. It is recommended that you do the following to avoid
this problem:

• Create tables, indexes, and packages using the Create Table utility
instead of creating these objects on the fly.

• Configure the ORACLE server to allow some extra statement
markers, in addition to the maximum number of open statement
markers you allow UNIFACE to open. In this way, you give yourself
a safety margin.

You must also take into account statement markers opened by:

• Database triggers which you create
• User-defined 3GL accessing ORACLE on the same logon path as the

driver
• PL/SQL called in the sql Proc instruction and in the SQL Workbench

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 41

You must reserve extra statement markers for these purposes as the
ORA driver only counts the statement markers that it opens. Reserve a
‘safety margin’ of extra statement markers by configuring the ORACLE
server to allow more statement markers than the ORA driver is allowed
to open.

You can configure the maximum number of statement markers per
session allowed by the ORACLE server by setting the ORACLE
initialization parameter OPEN_CURSORS (a parameter in INIT.ORA).
You must shut down and restart the server after changing its value. The
default value of the open cursor driver option is 45, which is less than
the default value 50 of the OPEN_CURSORS parameter in ORACLE. This
already provides a small safety margin.

The value of the open cursors driver option can be used to tune private
SQL and PL/SQL areas and to reduce the number of parse calls issued by
your UNIFACE application.

Calculating the number of cursors needed

It is recommended that you begin with the following guidelines to
compute an appropriate value for the open cursors driver option. For
every table accessed by an application on one particular logon path, add
the number of cursors required, as shown in table 4-2:

You may want to add additional statement markers, based on the
knowledge of how a particular table is accessed by your applications. For
example, the use of read u_where and selectdb Proc instructions or
order by clauses, and the use of various retrieve profiles can require
extra statement markers.

Determine the total number of statement markers per logon path for
your application. Take the maximum of these values and set the
open cursors driver option to that value. Do this for all your
applications. Different applications may use different values for the open
cursors option, which means that you will have to arrange for your

Table 4-2 Number of cursors opened when you access a UNIFACE table.

Table access method UNIFACE base
table

UNIFACE overflow
table

Stored package 6 Not applicable

Dynamic SQL (read only) 8 2

Dynamic SQL (read/write) 10 4

UNIFACE V7.2

42 (Oct 1999) Configuring

applications to read different assignment files. Ensure that the ORACLE
OPEN_CURSORS initialization parameter is at least equal to the largest
value of open cursors set for the applications connecting to the server.
As already described, allow a safety margin of some extra statement
markers to avoid problems with recursive statement markers opened by
the ORACLE server.

The following examples show how to calculate the number of statement
markers required by an application. The following three tables are
defined:

• Table EMP is a table which has an associated stored package.
• Table DEPT uses UNIFACE variable-length techniques (overflow

table).
• Table PROJECTS uses UNIFACE variable-length techniques

(overflow table).

Application HIRE uses two concurrent logon paths, $ORA1 and $ORA2.
It accesses the PROJECTS table via the $ORA1 path to database
personnel2. Ten statement markers are required for the PROJECTS
base table, and four statement markers for the PROJECTS overflow
table. It accesses the EMP table via the $ORA2 path to database
personnel1. Six statement markers are required for the EMP table.

The total number of statement markers required, therefore, is 14 for the
$ORA1 logon path, and six for the $ORA2 logon path. Choosing the
maximum of the values, therefore, means that the open cursors driver
option should be set to a value of 14.

A second application FIRE uses one logon path $ORA to the personnel1
database. Stored packages are disabled. Six statement markers are
required for the EMP table. The DEPT table is accessed read only, which
means that eight statement markers are required for the base table and
two are required for the overflow table (see table 4-2 for information on
the number of statement markers required when accessing a table). In
this case, the open cursors driver option should be set to a value of 16.

In this example, the server for database personnel1 should allow at
least 16 open statement markers, and the server for database
personnel2 should allow at least 14 (not six statement markers as
computed for logon path $ORA2, but the maximum value of
open cursors for all applications connecting to it).

i
Note: This calculation does not yet include the extra cursors which you
should reserve for ORACLE recursive cursors, database triggers,
user-defined 3GL and PL/SQL called in the sql Proc instruction or in the
SQL Workbench.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 43

The numbers which are presented as guidelines in table 4-2 are given in
the assumption that you want to improve performance and reduce
client/server communication overhead, at the cost of extra private SQL
areas allocated by the ORACLE server. This is usually a good choice in
client/server environments (especially when using SQL*Net).

If, however, you are accessing ORACLE locally on a platform with
memory limitations, you may want to allow UNIFACE fewer open
statement markers than suggested by the guidelines above. Do not
restrict the number of statement markers to less than two per open table
on any particular logon path. If you do specify less than this, the
following error can occur:
ORACLE Driver Error[-81]: No more cursors available for statement processing.
Increase value of ’open cursors’ in USYS$ORA_PARAMS.

You can find more information on tuning ORACLE memory allocation in
your ORACLE documentation which also provides information on how to
trace an application and observe its behavior with respect to parse calls.
It is a good idea to perform this tracing in a production environment, as
the figures described in this section are only guidelines.

4.6.2 Stepped hitlist

The default step size is dependent on the operating system; it is 10 on
most operating systems, but the number may be different (not
necessarily smaller) on platforms with memory limitations.

When UNIFACE is building the stepped hitlist, it uses ORACLE array
fetching to reduce the client/server communication overhead. This does,
however, mean extra memory usage by the driver.

If you want to ensure that the step size is a specific fixed value, do not
depend on the default value. Instead, use one of the following driver
options:

• array fetch size

• fixed array size

• step size

array fetch size

This option specifies the minimum number of records UNIFACE fetches
with one call to the ORACLE server using array fetching. The number
specified must be in the range of 1 through 32,767.

UNIFACE V7.2

44 (Oct 1999) Configuring

This option indirectly specifies the amount of memory which is
dynamically allocated by the ORA driver. The driver allocates an
I/O buffer of approximately 15 kilobytes multiplied by the array size plus
one. When you are using SQL*Net, memory is allocated on the client
platform. When PolyServer is used, memory allocation occurs on the
PolyServer platform. The I/O buffer is allocated when first needed, and
the memory is released when the number of logon paths to ORACLE
drops to zero.

The specified array size is subject to platform-specific memory
limitations. When the amount of memory required to fetch an array of
the specified size cannot be allocated, the following errors can occur:
ORACLE Driver Error[-54]: Storage required for I/O buffer exceeds system limits.
Reduce array size.

and:
ORACLE Driver Error[-4]: Dynamic memory allocation failed.

If you encounter driver error -54, reducing the array size solves the
problem. If driver error -4 occurs, both reducing the array size and
increasing available memory can solve the problem (for example,
increase the storage available for paging and swapping with virtual
memory operating systems).

fixed array size

By default, UNIFACE and the ORA U3.x driver make optimal use of the
memory that is allocated for ORACLE array fetching. The size of the
allocated memory is calculated based on the size of the largest possible
record. When smaller records are fetched, the array fetch size is
automatically increased to reduce the client/server communication
overhead as much as possible. The step size of the UNIFACE stepped
hitlist must be a multiple of the array fetch size which has been computed
in this way. The step size may, therefore, be very large. Because the array
size depends on the size of the record, the step size may vary for different
tables.

If you want to avoid having large and varying step sizes, you can set the
fixed array size option. The fixed array size option forces
UNIFACE to use exactly the array size specified with the
array fetch size option (or its default value), instead of dynamically
computing the maximum array size.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 45

step size

This option specifies the step size of the UNIFACE stepped hitlist
mechanism. The number specified must be in the range from 0 through
32,767. If you specify 0, the stepped hitlist mechanism is disabled,
causing UNIFACE to internally finish the hitlist each time, before
returning control to the application.

The actual step size used is always either zero or a multiple of the actual
array fetch size. When necessary, UNIFACE uses the smallest step size
greater than or equal to the specified step size which is a multiple of the
array size. To avoid confusion, specify a step size which is either zero or
a multiple of the specified array size.

When the fixed array size option is set, and the recommended step
size is a multiple of the array fetch size, the array fetch size option
only affects the performance of the application, and not the behavior. The
step size option, on the other hand, determines how many records are
processed before control returns to the application. This affects, for
example, the behavior of the $currhits variable.

Example:
USYS$ORA_PARAMS = array fetch size 5, step size 10, fixed array
size

If you use the assignment in this example, UNIFACE receives five
records at a time from the ORACLE server, and internally processes the
records in steps of 10 (two arrays of five records are fetched per step of
the hitlist). This is backwards compatible with older versions of the ORA
driver, which used a fixed step of 10. The performance is better because
array fetching is used.

UNIFACE V7.2

46 (Oct 1999) Configuring

4.7 Extended driver behavior

Performance tuning read option

The Proc read instruction has been enhanced with an option flag. The
option parameter allows you to adjust various DBMS
performance-related parameters, such as the maximum number of
returned hits, the step size of a query, and the hit cache size.

For more information on the use of the read Proc statement, see the Proc
Language Reference Manual.

Field subsetting

Fields which are not painted on the UNIFACE form are longer selected,
feteched, inserted, or updated by the DBMS driver. The UNIFACE
kernel determines which fields are not required.

4.8 ORACLE character sets
UNIFACE supports the use of multibyte character sets in combination
with ORACLE NLS multibyte character sets.

The character set of an ORACLE database is established when a
database is created. ORACLE automatically converts character data
(Char, Varchar2, Varchar, and Long storage formats) between the
database character set and the character set requested by the client (for
example, if another character set is specified in the NLS_LANG
environment variable).

When storing data in ORACLE with UNIFACE, character sets are
usually converted transparently, but this is not the case when you run
the ORA driver in a 8-bit environment which connects to an ORACLE
server in a 7-bit environment. For example, when the ORA driver runs in
an environment where the default character set is WE8DEC (8-bit DEC
West-European) and it connects to an ORACLE server installed with
US7ASCII (7-bit ASCII), some characters which are meaningful to
UNIFACE are corrupted when stored and retrieved. This problem is
solved by specifying the WE8DEC character set in the NLS_LANG
environment variable (set NLS_LANG to american_america.we8dec). For
more information on ORACLE environment variables, see chapter 9
System parameters.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 47

4.9 Assignment settings
You can use the $E6_BASEDATE assignment setting to store 0-1-0000 for
empty Time and DateTime fields. The format is as follows:

[SETTINGS]
$E6_BASEDATE 0000

This assignment setting is only available for ORACLE.

See Migration to UNIFACE V7.2 for important information about
migrating E6 packing data from earlier versions of UNIFACE.

UNIFACE V7.2

48 (Oct 1999) Configuring

 UNIFACE V7.2

Chapter

ORACLE Driver Guide (Oct 1999) 49

5 sql and the SQL Workbench
Both the sql Proc instruction and the SQL Workbench are supported.

If a transaction manager is running, commit and rollback is managed by
the transaction manager rather than the ORA driver. When you issue the
commit and rollback Proc instructions, they are not passed to the ORA
driver but to the transaction manager driver. The commit and rollback
instructions should not be used in the SQL workbench. For further
information, see the documentation for your transaction manager.

All data which is selected, except for Long Raw or BLOB fields, is
converted to the Varchar2 storage format by ORACLE with a maximum
length of 2000 characters.

Long Raw or BLOB data is converted by UNIFACE to a character string
in hexadecimal format, with a maximum length of 2000 characters.

If data is truncated when it is returned to UNIFACE, no error is
generated.

In the SQL Workbench, the maximum length of one row of the formatted
result is 8190 bytes. When this length is exceeded, the ORA driver
generates the following error:
ORACLE Driver Error [-27]: Selected data too large for SQL Workbench.

Data formats in the sql Proc instruction and SQL Workbench are
dependent on ORACLE National Language Support parameters. This is
the case both for input and output data.

UNIFACE V7.2

50 (Oct 1999) sql and the SQL Workbench

5.1 Special considerations for SQL

5.1.1 $result and $status

When you use the sql Proc instruction, the driver returns values to
$result and $status that depend on the SQL statement used. The
following list describes a few different circumstances:

• If the SQL statement used in the sql Proc instruction is a SELECT
statement which succeeds in selecting one or more rows, the first field
of the last row is returned as a character string in $result. The
conversion to character string occurs as described above. The number
of rows selected is returned in $status.1

• If the SQL statement is not a SELECT statement, or if the SELECT
statement succeeds but selects zero rows, $status has a value of zero
and $result is not modified.

• If the SQL statement fails, $status has a value less than zero and
the value of $result is undefined.

In the SQL Workbench, the return status is shown in the message area.

5.1.2 Other considerations

In the SQL Workbench, UNIFACE presents data using a fixed-column
length format. To preserve this format, UNIFACE rearranges the order
of the selected columns by moving all Long, Long Raw, CLOB, and BLOB
fields to the end. In the sql Proc instruction, the first field returned in
$result is always the first field selected in the query, even if it is a Long
or Long Raw field.

SQL statements must not be terminated with a semicolon and you cannot
use embedded SQL.

The ORA U3.x drivers supplied with UNIFACE Seven retrieve all data
when using a select statement in the SQL Workbench using Q call
mode 2. The ORA U2.0 driver for UNIFACE Seven and UNIFACE
Version 5 including the U3.x drivers for UNIFACE Version 5 use Q call
mode 2 with subsequent Q calls of mode 3.

1. Do not use the sql Proc instruction to count rows in this way, as this is very inefficient. If you want to count
rows, use the selectdb or lookup Proc instructions.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 51

i
Note: If you are using ODBC to manipulate numeric data, and the data
returned from ORACLE contains more than 32 digits, the ORA driver
truncates the returned data to 32 digits.

If you are using the U4.0 or U5.0 driver and wish to use rowid in a query,
you must explicitly convert the rowid to or from character format to the
ORACLE8 internal rowid format. Thus, SELECT statements should
select ROWIDTOCHAR(ROWID) rather than ROWID, and conditions should
have the syntax ‘ROWID=CHARTOROWID(‘rowid_string’)’.

5.2 Special considerations for PL/SQL
PL/SQL is supported in the sql Proc instruction and SQL Workbench,
provided that the ORACLE server to which you connect has the
Procedural option. Calling stored procedures and functions is possible.
PL/SQL statements and statement blocks are terminated by a semicolon.

PL/SQL code must be included in an anonymous PL/SQL block. For
example:
sql "begin raise_application_error(-20000, ’I goofed!’); end;", "ora"

When this statement is executed, $status returns a negative value and
$dberror contains the error number which is generated. ORACLE
errors in $dberror are always positive; $dberror returns 20000 in this
case.

As a special service for PL/SQL, UNIFACE allows you to pass one data
item back to UNIFACE, provided that this data item is convertible to the
Varchar2 storage format and has a maximum length of 2000 characters.
To achieve this, UNIFACE binds a placeholder called:uresult when it
is referenced in the PL/SQL block. (See your ORACLE PL/SQL
documentation for more information on placeholders.)

For example:
sql "begin select user into :uresult from dual; end;", "ora"

The value which is stored in:uresult by the PL/SQL block is available
as a character string in the Proc variable $result. The conversion to a
character string occurs as described above. When the PL/SQL block reads
the value of:uresult, it is a Varchar2 (2000) variable which holds the
NULL value.

UNIFACE V7.2

52 (Oct 1999) sql and the SQL Workbench

The situations which can arise, and the values they return, are as
follows:

• If a PL/SQL statement which does not reference the:uresult
placeholder succeeds, $status has a value of zero and $result is
not modified.

• If a PL/SQL statement references the:uresult placeholder, but
either assigns no value or the NULL value to it, $status has a value
of 1 and $result is the empty string.

• If a PL/SQL statement succeeds and assigns a non-NULL value to
the:uresult placeholder, $status has a value of 1 and $result
contains the value assigned to the:uresult placeholder converted to
a character string.

• If the PL/SQL statement fails then $status returns a value less than
zero and the value of $result is undefined.

In the SQL Workbench, the return status is shown in the message area.

As described for the sql Proc instruction, the SQL Workbench also
supports PL/SQL and the:uresult placeholder. This means that you
can test PL/SQL blocks in the SQL Workbench.

5.3 Monitoring SQL in the message frame
When UNIFACE logs on to ORACLE, the driver displays a message
which identifies the driver version, the driver options in the
USYS$ORA_PARAMS assignment and the current major and minor
package version numbers of the driver (see section 6.2 Stored package
version, for more information on package versions). For example, the
following message appears:
U3.3 ORA driver for ORACLE 7.3.
Driver options: step size 20.
The current major package version of the driver is: 1.
The current minor package version of the driver is: 0.

Apart from this message, only SQL and PL/SQL issued by UNIFACE is
displayed in the message frame.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 53

Because of the way UNIFACE uses SQL and PL/SQL with ORACLE, the
information you can see in the message is restricted in the following
ways:

• UNIFACE displays only those statements which are both parsed and
executed. For example, the table existence check which is performed
when a table is accessed for the first time is not shown, because it is
only parsed and not executed.

• UNIFACE uses a statement cache, which means that it reexecutes
statements which have already been generated and parsed. When
this occurs, no SQL is regenerated, and therefore no SQL appears in
the message frame.

• UNIFACE uses placeholders and host language binding, instead of
supplying actual data in the SQL statement. This means that you
cannot see data in the message frame. Placeholders are identifiers,
preceded by a colon. The placeholder names are generated by the ORA
driver, and are generally not very meaningful. For example:
SELECT "USER" FROM "DUAL" WHERE "DUMMY" = :"WPH1"

• UNIFACE implements commit and rollback using functions in the
ORACLE Call Interface, instead of using SQL statements. You
cannot, therefore, see the commit and rollback statements in the
message frame.

• UNIFACE implements multiple I/O requests by means of one stored
procedure. You can see the procedure call as an anonymous PL/SQL
block in the message frame, but you cannot see which I/O request is
being called. When multiple I/O requests occur, you usually see the
procedure call only once, as it is cached in the statement cache
managed by the ORA driver.

UNIFACE V7.2

54 (Oct 1999) sql and the SQL Workbench

 UNIFACE V7.2

Chapter

ORACLE Driver Guide (Oct 1999) 55

6 Stored packages
UNIFACE generates stored packages containing procedures for most
basic I/O operations.

!
Caution: UNIFACE generates stored packages for only one reason—to
improve performance. Do not make changes to the packages generated by
UNIFACE. Do not make any assumptions about the way that UNIFACE
uses the stored packages. For example, in situations where you might
expect UNIFACE to call a procedure in a stored package, it uses dynamic
SQL instead.

Using stored packages provides better performance than using the
equivalent dynamic SQL statements, for the following reasons:

• The stored package is parsed and compiled only once, then stored in
the database. Dynamic SQL statements, however, are parsed and
compiled every time they are issued by an application unless they are
present in the cache of shared SQL areas managed by the ORACLE
server.

• UNIFACE includes multiple I/O requests in one procedure per table.
This means that UNIFACE executes multiple statements with the
client/server communication overhead of only one statement. That is
the same amount of overhead required by only one dynamic SQL
statement. The economy afforded by stored packages is especially
important when using SQL*Net.

UNIFACE can only create and use stored packages at run time if the
ORACLE server to which the application connects has the Procedural
option. In UNIFACE, you can always generate SQL scripts to create the
packages. Do this with Deployment–>Database Utilities–>Create Table.

UNIFACE V7.2

56 (Oct 1999) Stored packages

UNIFACE associates one stored package with a table in ORACLE. For
each package, it creates both a package specification and a package body.
The name of the package is the name of the associated table, with $U
appended. Tables and packages are in the same name space in ORACLE.
The presence of the dollar sign ($) in the package name normally ensures
that there are no naming conflicts, as the $ is not allowed in UNIFACE
entity names.

Tables which meet any of the following conditions do not have an
associated package:

• The table contains a Long or Long Raw column.
• The table is defined with ‘No updates’ in the application model.
• The table name is one of the following reserved words:

CHECK_EXISTENCE_OF_PRIMARY_KEY
DELETE_ROW_BY_PK_AND_UVERSION
DELETE_ROW_BY_PRIMARY_KEY
DELETE_ROW_BY_ROWID
DUMMY_FIELD
LOCK_ROW_BY_PRIMARY_KEY
LOCK_ROW_BY_ROWID
MAJOR_VERSION
MINOR_VERSION
NUM_FALSE
NUM_TRUE
ONE_ROW_AFFECTED
SELECT_ROWIDROW_BY_PRIMARY_KEY

SELECT_ROW_BY_PRIMARY_KEY
SELECT_ROW_BY_ROWID
UNIFACE_IO_REQUEST
UPDATE_ROW_BY_PK_AND_UVERSION

UPDATE_ROW_BY_PRIMARY_KEY
UPDATE_ROW_BY_ROWID
WU_VERSION
XROWID

• The table name is identical to an X followed by the name of one of the
columns in the table, or the table name is identical to a W followed by
the name of one of the columns in the primary key of the table.

If a table meets one of the above conditions, UNIFACE does not create an
associated package specification and package body, but instead
automatically uses dynamic SQL with that table. You do not need to set
the driver option ignore missing packages when such a table is
accessed.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 57

6.1 Creating stored packages
It is recommended that you use the Create Table utility to generate an
SQL script which creates all tables and associated package specifications
and package bodies.

If you do not use the Create Table utility, and tables are created on the
fly, UNIFACE also creates the associated package specifications and
package bodies at the same time. Creating packages on the fly, however,
may require very long SQL statements, which can exceed the size of the
internal SQL buffer used by UNIFACE (approximately 10 kilobytes). If
this happens, the driver generates the following error:
ORACLE driver error[-51]: Generated SQL statement too large for internal buffer.

To avoid this, use the Create Table utility, instead of attempting to create
packages on the fly.

Another error which may occur if you create a package specification and
a package body on the fly is:
ORACLE driver error[-47]: Package created with compilation errors. Query the
ORACLE data dictionary view USER_ERRORS or DBA_ERRORS for the error messages.

When this error occurs, the actual compilation errors are not shown in
the message frame. To see these, you must query the ORACLE data
dictionary view USER_ERRORS or DBA_ERRORS. You can do this by using
the SQL Workbench or the ORACLE utility SQL*Plus. See your
ORACLE documentation for further information.

If you attempt to create a package generated by UNIFACE, but the
associated table does not exist, obscure PL/SQL compilation errors are
generated. This happens because the package uses the PL/SQL %TYPE
attribute to declare procedure parameters. This is only valid when the
associated table already exists. You will not normally encounter this
problem, as UNIFACE first creates the table and then the package.

6.2 Stored package version
UNIFACE assigns every package a major and a minor version number
when the package is created, or when the SQL script to create the
package is generated. The version numbers are hard-coded in a special
procedure, called PACKAGE_VERSION, so that UNIFACE can determine
the version at run time.

UNIFACE V7.2

58 (Oct 1999) Stored packages

These version numbers serve to maintain compatibility when the body of
the procedure is enhanced in subsequent releases of the ORA driver, and
to prevent future releases of the ORA driver from executing older and
incompatible versions of the package.

The ORA driver has a current major package version number and
current minor package version number. These version numbers must not
be confused with the driver version number (for example, U3.3) or with
any other version numbers of UNIFACE products. When UNIFACE
creates a stored package, or generates SQL scripts in the Create Table
utility, the package is assigned the current major and minor version
number from the ORA driver.

6.2.1 Compatibility of package versions

When the driver is requested to open a table, and it finds that the table
already exists, it calls the PACKAGE_VERSION procedure in the
associated package to determine the major and minor package version
number. When the major version number of the package in the database
is not equal to the current major package version number of the ORA
driver, the driver generates the following error (the names and version
numbers used are only examples):
ORACLE driver error[-83]: Major version number of package in the database not
acceptable: Package DEPTP, Major version of package in database is 2, current
major package version of ORACLE driver is 3.

This error indicates that an enhancement has been implemented in the
ORA driver (this resulted in the major package version of the driver
being changed) after the stored package was created, and that the stored
package has not been upgraded. If this error occurs, you must upgrade
the package as described in section 6.5 Upgrading the stored packages.

If the major version is correct, but the minor version number is not equal
to the current minor package version, UNIFACE automatically adapts
its behavior to use the package in the database. This means that, for
example, a performance enhancement is not used.

You can see what the current major and minor package versions of the
ORA driver are by running your application with SQL information in the
message frame (the /pri=32 command line switch). The version
numbers are then displayed when the driver logs on to ORACLE. For
example:
The current major package version of the driver is: 3.
The current minor package version number of the driver is: 1.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 59

Release notes accompanying a new version or maintenance release of
UNIFACE or the ORA driver may recommend or instruct you to upgrade
the packages to the current major and minor version of the ORA driver.
If you do not upgrade the packages, you may encounter the ORA driver
error -83 as previously shown. You can upgrade the packages using the
upgrade procedure described in section 6.5 Upgrading the stored
packages.

6.2.2 Packages used by multiple drivers

If multiple versions of the ORA driver are accessing the same schema,
they can only use the packages when all versions of the driver have the
same major package version number. If they already have the same
major package version number, it is recommended that you upgrade the
packages to the highest minor package number used by the drivers. To
do this, use the ORA driver with that minor package version number for
the upgrade procedure.

If the different ORA drivers do not have the same major version
numbers, it is recommended that you install a new maintenance release
of UNIFACE or the ORA driver to replace the driver or drivers with the
lower major package version number or numbers. Alternatively, you can
set the driver option disable packages in the USYS$ORA_PARAMS
assignment, for all or some of the drivers, so that only drivers with
identical major package versions are using the packages in the schema.

UNIFACE V7.2

60 (Oct 1999) Stored packages

6.3 Dependency of packages
The definition of the package specification and package body are based
on the definition of the associated entity in the UNIFACE application
model. If you change the application model entity definitions after the
package has been created, or after the generation of the SQL script to
create that package, you may have to re-create that package.

i
Note: Keeping track of the dependencies between packages and the
application model can be difficult if the application model changes
frequently. Therefore, it is recommended that you set the
disable packages driver option during the early stages of development.
If you have doubts about the validity of a stored package, follow the
upgrade procedure as described in section 6.5 Upgrading the stored
packages.

If you make any of the following changes to your application model, you
must create or replace the packages associated with the entities
concerned:

• Remove or add an entity, or change its name.
• Change an entity from ‘No updates’ to modifiable.
• Add or remove a column, or change its name.
• Add a column, or remove a column from the primary key.
• Change the data type or packing code of a column.
• Change the order of fields in the entity or in the primary key.

!
Caution: If a stored package is not consistent with the definition of the
associated table in the application model, very obscure errors can occur at
run time.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 61

6.4 Dependency of packages on driver options
Normally, you would not create or upgrade packages because of changes
in driver option settings. Exceptions to this rule occur in the following
situations:

• If packages were never created, and a driver option which disabled
stored packages was set, and that option is reset, you must create
packages.

• If packages were created with an older version of the ORA driver,
which had an incompatible major package version, and a driver
option which disabled stored packages was set, you must upgrade all
packages before resetting the driver option.

6.5 Upgrading the stored packages
New UNIFACE or ORA driver releases may involve changes in driver
functionality which require that all packages be updated. A package
upgrade procedure is provided which you can use for the following
purposes:

• To add packages to tables for which the packages were not yet
created.

• To upgrade all packages to the current major and minor package
version of the ORA driver.

• To update packages to reflect changes in the application model.

i
Note: If you have any doubts about whether all packages are up-to-date or
not, it is always good practice to follow the package upgrade procedure.

6.5.1 The upgrade procedure

The package upgrade procedure is as follows:

1. Set the driver option upgrade packages in the USYS$ORA_PARAMS
assignment. Make sure that the options disable checks and
disable packages are not set.

2. Run the Create Table utility (Deployment–>Database
Utilities–>Create Table) for the tables associated with the packages

UNIFACE V7.2

62 (Oct 1999) Stored packages

that you want to upgrade. Because the upgrade packages option is
set, the Create Table utility only generates the statements required
to upgrade the packages, and does not generate statements to create
tables and indexes.

3. Execute the generated SQL script using the ORACLE utility
SQL*Plus or SQL*DBA. It is only possible to create the packages in a
schema which already contains the associated tables. If you want to
create both the tables and the packages, you should be using the
normal functionality of the Create Table utility and not this upgrade
procedure.

4. Test your applications with the new packages.
5. Remove the upgrade packages option from the USYS$ORA_PARAMS

assignment. At this stage, you may set the disable checks option if
you want.

When performing the upgrade procedure, you do not need to drop the old
packages, because UNIFACE generates the statement:

CREATE OR REPLACE PACKAGE ...

However, when you change the name of an entity, or remove an entity or
change the application model in such a way that an entity no longer has
an associated package, the upgrade procedure does not drop the packages
which are no longer used. This is harmless, but the old packages waste
space in the database. In this case, it is advisable to drop all packages in
a schema before performing the upgrade procedure.

6.6 Driver options affecting stored packages
If you set any of the following options in the USYS$ORA_PARAMS
assignment, the use of stored packages is disabled:

• disable packages
• u2 default mapping
• u2 enhanced_mapping
• u2 enhanced_mapping_2

If the use of stored packages is disabled, the behavior of UNIFACE
changes as follows:

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 63

• UNIFACE does not generate CREATE OR REPLACE PACKAGE and
CREATE OR REPLACE PACKAGE BODY statements when you use the
Create Table utility.

• UNIFACE does not create package specifications and package bodies
when it creates tables on the fly.

• UNIFACE does not attempt to call procedures, but uses only dynamic
SQL, even when the packages exist in the database.

• The ORA driver does not display the current major and minor
package version in the message frame when the application is
monitoring SQL.

You must disable the use of stored packages when connecting to an
ORACLE server which does not have the Procedural option. You may
want to disable the use of stored packages when working in a
development environment where the application model changes
frequently, thus causing extra overhead for recreating the packages
which are dependent on that application model.

The rest of the options described in this section are applicable only if you
have not disabled the use of stored packages.

upgrade packages

If the driver option upgrade packages is set, the Create Table utility
generates only the CREATE OR REPLACE PACKAGE and
CREATE OR REPLACE PACKAGE BODY statements, and not the
CREATE TABLE and CREATE INDEX statements which are normally
generated. This option is set when performing the upgrade procedure
described in section 6.5 Upgrading the stored packages. This option does
not affect the behavior of UNIFACE when creating tables, indexes and
packages on the fly.

The SQL script generated by the Create Table utility when this option is
set can only be executed on a schema if the associated tables already exist
in that schema. When you attempt to create the packages in a schema
where the associated tables do not yet exist, obscure PL/SQL compilation
errors occur.

UNIFACE V7.2

64 (Oct 1999) Stored packages

disable checks

By default, when accessing a table, UNIFACE calls the
PACKAGE_VERSION procedure in the stored package associated with the
table once it has checked that the table exists. UNIFACE then checks
whether the major package version of that package is compatible with
the current major package version of the ORA driver, and stores the
minor package version in its internal administration. This is explained
in section 6.2 Stored package version.

If the driver option disable checks is set, UNIFACE does not call the
PACKAGE_VERSION procedure. In that case, you must ensure that both
the major package version and the minor package version are identical
to the current major and minor package versions of the ORA driver. By
disabling the check in this way, you improve performance.

!
Caution: If the disable checks option is set, and either the major or
minor package version is not identical to the current package version of
the ORA driver, obscure errors can occur at run time. To avoid this
problem, follow the package upgrade procedure described in section 6.5
Upgrading the stored packages, before setting the disable checks
option. It is recommended that you first test your applications and
databases without the disable checks option set whenever you install a
new release of UNIFACE or the ORA driver.

ignore missing packages

By default, the ORA driver generates an error when a stored package
does not exist in the database. This happens when UNIFACE calls the
PACKAGE_VERSION procedure after it has checked whether a table
exists. If, however, the driver option ignore missing packages is set,
and the call to the PACKAGE_VERSION procedure fails abnormally,
UNIFACE ignores the package, does not raise an error, and continues as
normal using only dynamic SQL for the table concerned.

You can selectively disable the use of stored packages by not creating
them for some tables, and by setting the ignore missing packages
option. This option is also useful when an application primarily accesses
a database with the Procedural option, but it must also access a database
without this option.

The disadvantages of the ignore missing packages option are:

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 65

• If a stored package is available, but an abnormal error occurs when
calling the PACKAGE_VERSION procedure, the error goes unnoticed.

• When ignore missing packages is in use, you cannot use the
disable checks option. This means that you do not gain the
performance improvement provided by disable checks.

disable hint first_rows

By default, UNIFACE generates the optimizer hint first_rows for
appropriate situations. The generated hint is also included in the SQL
statements in the stored packages. Using hints in certain situations can
have a negative impact on performance.

If the disable hint first_rows option is set, UNIFACE does not
include the hint in the stored packages. This is true for the Create Table
utility and when creating packages on the fly.

If you want to include the hint in some packages but not in others, you
can do so by running the Create Table utility for individual tables and
selectively setting the disable hint first_rows option.

6.6.1 Referential integrity

Implementation of relationships

When the foreign key rule of a relationship is RES or CAS, the
relationship is implemented in ORACLE by a declarative integrity
constraint:

ALTER TABLE table_name
ADD CONSTRAINT constraint_name
FOREIGN KEY (foreign_key_fields)
REFERENCES table_name (referenced_key_fields)
[ON DELETE CASCADE]

The constraint name is the relationship name assigned in the Create
Script utility.

UNIFACE V7.2

66 (Oct 1999) Stored packages

When the foreign key rule of a relationship is NUL, the relationship is
implemented by a set of triggers in table 6-1:

The declarative foreign key constraint names and the names of database
triggers follow the naming conventions for schema objects as described in
section 3.3.2 Naming rules for schema objects.

When a table is involved in multiple relationships with a NUL foreign
key rule, multiple actions are combined in the triggers. The name of the
relationship is included in comment with every action.

The SQL generated by the Create Script utility to check the database for
violations of referential integrity only checks the relationships with a
NUL foreign key rule. The relationships with a RES or CAS foreign key
rule are automatically checked by ORACLE when you attempt to create
these relationships.

i
Note: The ALTER TABLE ... ADD CONSTRAINT generated by UNIFACE
does not include the EXCEPTIONS INTO clause. If you want ORACLE to
report which rows violate referential integrity, you must create an
exceptions table and edit the ADD CONSTRAINT statement generated by
UNIFACE. Refer to your ORACLE documentation for more information.

The SQL generated by the Create Script utility to check the database for
referential integrity violations uses formatting features of the ORACLE
utility SQL*Plus. Use SQL*Plus to execute the generated file.

Driver option to disable foreign key rules

By default, the UNIFACE CAS and NUL foreign key rules are enabled
when using ORACLE. When using UNIFACE, it is recommended that
you do not change this default in a development environment otherwise
there is an overhead of the data conversion procedure.

If you decide to implement the relationships in ORACLE, you must set
the following driver option in the USYS$ORA_PARAMS assignment:
USYS$ORA_PARAMS = disable foreign key rules

Table 6-1 Trigger names used to implement relationships.

Trigger name Triggers on Purpose

one_table_name_U UPDATE on the one table. Disallow update of referenced key.

one_table_name_D DELETE on the one table. Nullify referencing keys.

many_table_name_IU INSERT or UPDATE on the many table. Disallow unmatched foreign key.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 67

You can also use the short format:
USYS$ORA_PARAMS = df

Refer to chapter 10 Overview of driver options (USYS$ORA_PARAMS)
for more information on the syntax of the USYS$ORA_PARAMS
assignment.

Limitations

The following limitations apply when using the referential integrity
enhancements with ORACLE:

• It is not feasible to create tables on the fly with referential integrity
support.

• The first 26 characters of relationship names within an application
model should be unique.

• UNIFACE does not provide SQL scripts for referential integrity on
the data tables of the demo application. Do not set the disable
foreign key rules driver option when accessing any of these tables
in ORACLE.

There are some limitations on the use of triggers in ORACLE:

• The trigger for the nullify action is not valid when it attempts to
nullify a foreign key in a mutating or constraining table. Refer to your
ORACLE documentation for more information on mutating and
constraining tables.

• Problems can arise when there is a cycle in the graph of relationships
with at least one NUL foreign key rule. The simplest case is a
self-referential table with a NUL foreign key rule. UNIFACE makes
no attempt to detect or overcome these limitations and may create
nonvalid triggers in such cases.

Relationships in ORACLE are only supported when the default packing
code mapping is used. For this reason, the disable foreign key rules
driver option cannot be set when any of the u2 packing code mapping
options is set. When you do attempt to set both a u2 packing code
mapping option and the disable foreign key rules option, the
following error message is generated:
ORACLE Driver Error [-9]: Invalid combination of driver options in
USYS$ORA_PARAMS assignment

UNIFACE V7.2

68 (Oct 1999) Stored packages

Attempting to use the Create Script utility with any of the u2 packing
code mapping options set causes the following error:
ORACLE Driver Error [-90]: Relationships in ORACLE not supported with a u2
packing code mapping

If any of the relationships have the NUL foreign key rule, the ORACLE
server must have the Procedural Database option because these are
implemented by database triggers.

If any of the relationships have the NUL foreign key rule, the
CREATE TRIGGER privilege is required to be able to create the
relationships. The CREATE TRIGGER privilege should be given to the
UNIFACE_DEVELOPER role.

Foreign key fields cannot have the Long, Long Raw, BLOB, or CLOB
storage format.

When databases have been migrated from earlier ORA driver versions
using the backward compatibility method rather than the conversion
method, problems can occur when creating the relationships. This is
because earlier ORA driver versions created a Unique Index with Not
Null constraints for the primary key and candidate key, whereas
relationships can only be defined on an ORACLE Primary Key or a
Unique Key. The generic database conversion procedure should be used
to export, re-create and import data, or tables should be modified
manually to create the Primary Key and Unique Key constraints.

 UNIFACE V7.2

Chapter

ORACLE Driver Guide (Oct 1999) 69

7 Service Stored Procedures
This chapter discusses:

• Component names
• Parameters
• Exception behavior

Service Stored Procedure functionality is only available in the ORACLE
8 (U4.0 and U5.0) drivers.

For information about stored procedure components, see the URB
Interfaces Manual.

7.1 Component names
The stored procedure name used for execution by UNIFACE is derived
from the component name and the operation name as shown in table 7-1:

Table 7-1 Component name and component operation name specification.

Literal component
name

Literal operation
name

Stored procedure name

Not specified Not specified 4GLComponentName.4GLOperationName
Not specified Specified LiteralOperationName†

Table notes:
† These stored procedures have no package. All other stored procedures are included within packages.

Specified Not specified LiteralComponentName.4GLOperationName
Specified Specified LiteralComponentName.LiteralOperationName

UNIFACE V7.2

70 (Oct 1999) Service Stored Procedures

7.2 Parameters
Parameter names are not used during the execution of stored procedures.
However, their ordering (that is, their relative position) is used for
mapping parameters.

Parameter types

ORACLE supports multiple output entity parameters. You can use both
basic and entity parameters for output. The maximum number of
parameters is 100, of which 25 can be entity parameters.

Data conversions

The data types of operation parameters must closely match the stored
procedure parameters. If necessary, explicit and implicit conversions are
used to achieve an optimal mapping for all data types.

The supported parameter data type mappings for ORACLE are shown in
table 7-2. (The data type mappings shown in table 7-2 apply to both basic
parameters and entity parameters.) I

Table 7-2 UNIFACE to ORACLE parameter data type mappings.

ORACLE
data type

String Boolean Numeric Float (L)Date (L)Time (L)Datetime Raw Image

char Y Y Y Y †

Table notes:
† This data type conversion depends on ORACLE behavior which can be changed by a query. For example:

alter session set NLS_DATE_FORMAT=’DDMMYYYY HH24:MI:SS’

For information on alter session parameters, see your ORACLE documentation.

† †

varchar2 Y Y Y Y † † †

number Y Y Y Y † † †

float Y Y Y

date Y Y Y Y

long

lobs

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 71

Input, output and in-output parameters

All parameter data is passed to ORACLE as binded data. To achieve an
optimal mapping for all parameters, both ORACLE parameter data type
and operator parameter data type information is used to determine the
ORACLE binding data types.

NULL support

Empty input string values are mapped to ORACLE values as NULL
values. There is one exception to this: empty UNIFACE boolean data
types are always mapped to FALSE. This is standard functionality.

7.3 USYS$ORA_PARAMS
There are no specific driver settings for ORACLE SSPs. For information
on USYS$ORA_PARMS options, see chapter 10 Overview of driver
options (USYS$ORA_PARAMS).

7.4 Exception behavior
The exceptions shown in table 7-3 are detected by the ORACLE driver:

Table 7-3 Exception message numbers and meanings.

$procerror Meaning

-21 Connection failure

-55 Input parameters failure

-56 Output parameter failure

-150 Driver or ORACLE failure

-166 Operation is not stateless

-1406 Memory allocation failure

UNIFACE V7.2

72 (Oct 1999) Service Stored Procedures

The following messages are generated by the ORACLE driver when
signature matching:

• Operation/Procedure name mismatch. This is detected by ORACLE,
and is reported with the message:
ORA-6550 Component <stored procedure> must be declared

• Signature mismatch in number of arguments. This is detected by
ORACLE, and is reported with the message:
ORA-1123 Wrong number of parameters

• Entity parameters with non-matching number of fields. This is
detected by ORACLE, and is reported with the message:
ORA-1007 A reference was made to a variable not listed in the SELECT clause.

7.5 Examples
The following examples illustrate the use of Service Stored Procedures.
The first example shows a Service Stored Procedure with two basic
parameters. It is executed with the following activate Proc statement:
activate "EXAMPLE".sp_insert(in, $inout$)

The sp_insert operation has the parameters shown in table 7-4:

The ORACLE SQL is as follows:
CREATE OR REPLACE
PACKAGE BODY "WORKTODO".EXAMPLE
as

procedure sp_ent (
entcur1 IN OUT ent1)

is
BEGIN
open entcur1 for select str, num from tab;
END;

Table 7-4 sp_insert operation parameters.

Name Type Data Type Input/Output

u_str Basic String Input
u_num Basic Numeric Input/Output

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 73

procedure sp_insert (
str IN varchar2,
num IN OUT number)

is
BEGIN
insert into tab values (str, num);
num := num + 1;
END;
END;
/

The second example shows the use of a Service Stored Procedure with one
entity parameter. It is executed with the following activate Proc
statement:
activate "EXAMPLE".sp_ent("tab.model")

The sp_ent operation has the parameters shown in table 7-5:

The tab entity has the fields shown in table 7-6:

The ORACLE SQL script is as follows:
CREATE TABLE tab (str varchar2(40), num number(20));
/
CREATE OR REPLACE
PACKAGE "WORKTODO".EXAMPLE
as
cursor c1 is select str, num from tab;
type ent1 is ref cursor return c1%ROWTYPE;

procedure sp_ent (
entcur1 IN OUT ent1);

procedure sp_insert (
str IN varchar2,
num IN OUT number);

END;
/

Table 7-5 sp_ent operation parameters.

Name Type Data Type Input/Output

u_ent Entity - Output

Table 7-6 tab entity structure.

Name Type Data Type

str S VC40
num N C20

UNIFACE V7.2

74 (Oct 1999) Service Stored Procedures

 UNIFACE V7.2

Chapter

ORACLE Driver Guide (Oct 1999) 75

8 Data types and packing codes
Table 8-1 describes the default mapping of UNIFACE packing codes to
ORACLE storage formats:

Table 8-1 How UNIFACE packing codes map to ORACLE storage formats. part 1 of 2

UNIFACE packing
codes

ORACLE storage format

B1-B4 Char

C1-C255 Char

C256-C2000 Varchar2

C2001-Cn Long

C* Long (Long Raw if binary length ID is used)

D Date

D1-D13 Date

E Date

E1-E13 Date

F4, F8 Number

I1-I8 Number

M1-M4 Number

N1-N32 Number

(N)C1-32† Number

O1-O32 Number

P1-P16 Number

Q1-Q16 Number

R1-R255 Raw

R256-Rn Long Raw

UNIFACE V7.2

76 (Oct 1999) Data types and packing codes

R* Long Raw

SC1-SCn Long in U3.x, CLOB in U4.0 and U5.0

SC* Long in U3.x, CLOB in U4.0 and U5.0

SR1-SRn Long Raw in U3.x, BLOB in U4.0 and U5.0

SR* Long Raw in U3.x, BLOB in U4.0 and U5.0

SU1-SUn Long Raw in U3.x, CLOB in U4.0 and U5.0

SU* Long Raw in U3.x, CLOB in U4.0 and U5.0

T Date

T1-T3 Date

U1-U255 Char

U256-U2000 Varchar2

U2001-Un Long

U* Long (Long Raw if binary length ID is used)

VC1-VC2000 Varchar2

VC2001-VCn Long

VC* Long (Long Raw if binary length ID is used)

VR1-VR255 Raw

VR256-VRn Long Raw

VR* Long Raw

VU1-VU2000 Varchar2

VU2001-VUn Long

VU* Long (Long Raw if binary length ID is used)

Y1.0-Y32.9 Raw (Long Raw if length > 255)

Z Raw (Long Raw if length > 255)

Table notes:
† Numeric data type packed with C packing code.

Table 8-1 How UNIFACE packing codes map to ORACLE storage formats. part 2 of 2

UNIFACE packing
codes

ORACLE storage format

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 77

8.1 Explanation of ORACLE storage formats
The information that follows is only intended as a guide and is not a
complete description of ORACLE storage formats. If you are in any doubt
about the exact requirements in your environment, see the ORACLE
documentation.

8.1.1 Char

The Char storage format is used to store fixed-length character strings.
You may specify up to a maximum of 255 bytes for a Char column (the
default length is one byte). When storing Char columns, ORACLE pads
them out with blanks to their maximum length. When it compares two
Char column values, ORACLE uses blank-padded comparison semantics.

The character set used by the database is defined at the time the
database is created. See section 4.8 ORACLE character sets, for
information on configuring the ORACLE character sets.

8.1.2 Varchar2

The Varchar2 storage format is used to store variable-length character
strings. You may specify up to a maximum of 2000 bytes for a Varchar2
column (the default length is one byte). ORACLE uses variable-length
storage techniques when it stores values in Varchar2 columns. When it
compares two Varchar2 column values, ORACLE uses non-padded
comparison semantics.

8.1.3 Varchar

The Varchar storage format is synonymous with the Varchar2 storage
format. UNIFACE does not create columns in ORACLE with the Varchar
storage format. You can however access existing Varchar columns by
defining them in UNIFACE as you would define Varchar2 columns. For
example, in UNIFACE, you should define a Varchar(40) column as
having data type S and packing code VC40.

UNIFACE V7.2

78 (Oct 1999) Data types and packing codes

8.1.4 Number

Number is a storage format for fixed and floating point numbers. The
values you can store range from -9.99...* 10125 through 9.99...* 10125, and
can have a maximum length of 38 significant digits.

UNIFACE allows you to specify non-default decimal characters by
setting the ORACLE parameter NLS_NUMERIC_CHARACTERS (for
example, if you want to use a character other than the period (.) to
represent the decimal point). This does not change the way UNIFACE
interprets and presents numeric values, except in the sql Proc
instruction, the SQL Workbench and the read where Proc instruction.

8.1.5 Date

The Date storage format is used to store point-in-time values, which
consist of both a date and a time. The values which can be stored in a
Date field range from Jan 1, 4712 BC 00.00.00 through Dec 31, 4712
AD 23.59.59.

If no time is available with a value to be stored in the Date storage
format, UNIFACE adds the default time of 00:00:00. If time is recorded
without date information, UNIFACE adds the NULL date of 01011900
(1 January, 1900). Arithmetic functions with Date are possible.

UNIFACE allows you to specify non-default date formats by setting
ORACLE parameters such as NLS_DATE_FORMAT. This does not change
the way UNIFACE interprets and presents Date values, except in the
sql Proc Instruction, the SQL Workbench and the read where Proc
instruction.

8.1.6 Long

The Long storage format is used to store variable-length character data
to a maximum length of two gigabytes. The following restrictions apply
when using the Long storage format:

• An ORACLE table may contain only one Long or Long Raw column.
• Stored procedure arguments cannot be declared using the Long

storage format.
• Long and Long Raw columns cannot appear in integrity constraints

(except for NOT NULL).

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 79

• Long columns cannot be indexed.
• Long columns cannot appear in the where clause, the order by

clause, nor in SQL functions, expressions and conditions.
• Segmented read is possible with Long columns, but segmented write

is not.

UNIFACE uses the Long storage format in the following circumstances:

• When a field is defined in UNIFACE as having data type S or SS and
packing code C,VC, U, or VU, and that field exceeds the maximum
length of the Varchar2 storage format, UNIFACE uses the Long
storage format. UNIFACE cannot store or retrieve values which
exceed the length defined for the field in the application model. This
restriction is not enforced by ORACLE, however, as Long columns do
not have a declared maximum length.

• For BLOB data when using a U3.x driver. UNIFACE fields defined
with data type S or SS, and packing code SC or SU, are stored using
the Long storage format and can be used to store BLOB data. When
you define fields with the segmented packing codes SC or SU,
UNIFACE can use them to store data to a maximum length of 2
gigabytes. This is, however, a theoretical limit, and the true limit
depends upon the constraints imposed by your operating system. See
section 4.5 Implementation of segmented interfaces, for more
information on using segmented packing codes with ORACLE.

• For variable-length fields. If you define a variable-length field in
UNIFACE, it is stored in a Long or Long Raw column of an overflow
table (this is according to UNIFACE’s own variable-length
techniques).

When using the U3.x driver, if you want to access a Long column in an
existing database, you must use the S data type and the SC* packing
code. When using the U4.0 or U5.0 driver, you must use the S data type
and the VC* packing code.

8.1.7 Raw

The Raw storage format is used to store binary data which ORACLE does
not convert or interpret. You may specify a length up to a maximum of
255 bytes for a Raw column.

UNIFACE V7.2

80 (Oct 1999) Data types and packing codes

8.1.8 Long Raw

The Long Raw storage format is used to store large amounts of binary
data which ORACLE does not convert or interpret. You can store up to
two gigabytes (the theoretical limit) of data in a Long Raw column. The
ways in which UNIFACE uses the Long Raw storage format, and the
limitations which apply to its use are the same as those described for the
Long storage format.

When using the U3.x driver, if you want to access a Long Raw column in
an existing database, you must use the R data type and the SR* packing
code. When using the U4.0 or U5.0 driver, you must use the R data type
and the VR* packing code.

8.1.9 CLOB and BLOB

These are used to store CLOB and BLOB data, respectively, where
UNIFACE fields are defined with data type S or SS and packing code SC.
When you define fields with the segmented packing code SC, UNIFACE
can store data to a maximum length of four gigabytes. These fields are
treated like any other except that they may not be used in a condition,
either explicitly, through a u_where or where Proc, or implicitly, by
entering data in a CLOB or BLOB field before requesting a retrieve.

8.1.10 Rowid

Rowids are the physical addresses of rows in the database. UNIFACE
uses Rowids because they are the fastest way to access individual rows.
This speed of access becomes particularly important when UNIFACE
must address a row several times in short succession (for example, the
first time to select a row with its Rowid, the second time to lock that row
and the third time to update that row).

UNIFACE uses Rowids automatically. It is neither necessary or possible
to define the Rowid pseudo column of a table in the application model.

Entities that are accessed through ORACLE Gateway products use
Rowids that vary from zero through 255 bytes. UNIFACE cannot
currently handle variable-length Rowids but the disable rowid driver
option can be set so that the driver can handle these entities.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 81

8.1.11 Mlslabel and Raw Mlslabel

These two storage formats are only available with Trusted ORACLE and
are therefore not supported by UNIFACE.

8.2 Modify packing code mapping
The UNIFACE U2.x drivers (where x is 1 or 0) supported several
different ways to map packing codes to ORACLE storage formats. With
the U3.x driver for ORACLE, it is recommended that you only use the
default packing code mapping, and you should migrate existing
databases to this method. See chapter 12 Migrating between U2.x, U3.x,
U4.0, and U5.0, for more information on the migration procedure.

i
Note: If possible, use the default packing code mapping with the U3.x
driver. The mapping code methods: u2 default mapping,
u2 enhanced_mapping, u2 enhanced_mapping_2 and
map fixed-length to variable are only provided for reasons of
backward compatibility. They may be discontinued in a future version of
UNIFACE, so you should migrate your database to use the U3.x default
mapping at the earliest opportunity. There are no plans to discontinue the
disable segmented field option.

You can use an existing database which uses U2.x packing code mapping,
with the U3.x driver. For this reason, the following driver options are
available with the U3.x driver:

• u2 default mapping–When this option is set, the U3.x driver maps
packing codes to storage formats using the U2.x driver’s default
mapping.

• u2 enhanced_mapping–When this option is set, the U3.x driver
maps packing codes to storage formats using the U2.x driver’s
enhanced mapping. See the DBMS Specific module ORACLE Driver
Guide for more information on U2.x enhanced_mapping.

• u2 enhanced_mapping_2–When this option is set, the U3.x driver
maps packing codes to storage formats using the U2.x driver’s
enhanced_mapping_2. See the DBMS Specific module ORACLE
Driver Guide for more information on U2.x enhanced_mapping_2.

UNIFACE V7.2

82 (Oct 1999) Data types and packing codes

!
Caution: If you are using one of these alternative mapping methods, or if
you use the disable segmented fields option (see below), you must
convert all existing data if you decide to change to a different mapping
method. See chapter 11 Generic database conversion procedure, for more
information on the data conversion procedure.

8.2.1 The map fixed length to variable option

When the map fixed length to variable option is set, all fields which
would normally be mapped to the Char storage format (using U3.x
default mapping), are instead mapped to the Varchar2 storage format.
Use this option to avoid incompatibility when migrating from the U2.x
driver to the U3.x driver. You cannot use this option if you have already
specified one of the U2.x mapping options described above. See
section 12.1.4 Compatibility problems for more information.

8.2.2 The disable segmented fields option

This option is useful only when using a U3.x driver. The disable
segmented fields is another UNIFACE driver option which changes
the way certain packing codes are mapped. When this option is set,
UNIFACE transparently maps fields with segmented packing codes into
the variable portion of the record, using UNIFACE’s own variable-length
techniques.

You can use this option in the following situations:

• If a table contains more than one Long or Long Raw column because
you have defined one or more segmented fields in your application
model.
ORACLE does not allow more than one Long or Long Raw column per
table. If you specify use of the UNIFACE variable-length technique
(using overflow tables), you avoid this problem because only one Long
or Long Raw column is necessary per table.

• If memory limitations specific to your operating system stop your
application from writing a large segmented field. (See section 4.5
Implementation of segmented interfaces for more information on
segmented I/O in ORACLE.)

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 83

If you specify using the UNIFACE variable-length technique, the
driver is no longer dependent on operating-system dynamic memory
allocation when writing a field with a segmented interface.

You cannot use this option if you have already specified one of the U2.x
mapping options described above.

!
Caution: When you store fields in the database using the UNIFACE
variable-length technique, they cannot be accessed by tools other than
UNIFACE.

UNIFACE V7.2

84 (Oct 1999) Data types and packing codes

 UNIFACE V7.2

Chapter

ORACLE Driver Guide (Oct 1999) 85

9 System parameters
A number of environment variables are read from the environment and
interpreted by ORACLE. The details of these variables, and how to define
them for your operating system, can be found in your ORACLE
documentation. For example, ORACLE on Alpha OpenVMS AXP uses a
command file ORAUSER_dbname.COM, and ORACLE on UNIX uses
shell-specific scripts, such as oraenv.

The information in this chapter is only intended as a guide. Refer to your
ORACLE documentation for your operating system for more information.

9.1 Environment variables
The environment variables described in this section are the variables
which are most important when using UNIFACE with ORACLE.

If you are using UNIFACE with the ORACLE network product SQL*Net,
define the environment variables in the client environment. When you
use PolyServer, they must be defined in the PolyServer environment.

9.1.1 ORACLE_HOME

The ORACLE_HOME (UNIX, MS-DOS, OS/2) environment variable must
identify the location of the ORACLE installation in the file system.
Whenever you install a specific ORA driver version, or when you link
UNIFACE Seven, PolyServer or UNIFACE applications with a specific
ORA driver version on UNIX, ORACLE_HOME must identify an
installation of the correct ORACLE version. See chapter 1 Introduction
for more information on the different ORA driver versions.

UNIFACE V7.2

86 (Oct 1999) System parameters

9.1.2 ORACLE_SID

The ORACLE_SID (UNIX) environment variable, in combination with
ORACLE_HOME, identifies an ORACLE database. This is the default
database to which the application connects when no database is specified
in the logon path specification.

9.1.3 TWO_TASK

The TWO_TASK (UNIX) environment variable may specify a default
ORACLE two-task communication driver (including SQL*Net drivers), a
host and a database. This is the default database to which the application
connects when no database is specified in the logon path specification.
The TWO_TASK variable overrides the ORACLE_HOME and ORACLE_SID
variables in determining the database to which the application will
connect.

9.1.4 NLS_LANG

The NLS_LANG (UNIX) environment variable optionally specifies the
language, territory, and character set National Language Support
parameters. It is recommended that you define NLS_LANG when the
database to which the application connects uses a different character set
than the default character set assumed in your ORACLE client
environment.

See section 4.8 ORACLE character sets for more information on
specifying a character set.

 UNIFACE V7.2

Chapter

ORACLE Driver Guide (Oct 1999) 87

10 Overview of driver options
(USYS$ORA_PARAMS)
This section presents a complete overview of all driver options, and
describes the syntax of the USYS$ORA_PARAMS assignment.

Every option can be specified using either a Long format, which is
readable, or a short format, which allows you to set many options in the
USYS$ORA_PARAMS assignment. The assignment cannot be longer than
one line in the assignment file.

i
Note: If PolyServer is used, the USYS$ORA_PARAMS assignment setting
must be in an assignment file on the server platform. The setting must be
in an assignment file on the client platform if ORACLE is accessed locally
or if SQL*Net is used.

Most options are enable or disable options; that is, a specific feature is
enabled or disabled by setting the option. Some options have a numeric
parameter. This parameter must be a nonnegative decimal integer. The
range of valid values is option-specific. Every numeric option has a
default value.

The syntax rules for USYS$ORA_PARAMS are as follows:

• Each option may be specified once, either in Long format or in short
format, not both. Options in Long format may be mixed with other
options in short format.

• The order in which the options are specified is not significant.
• Options must be separated by a comma.
• Words and numbers within one option are separated by one or more

spaces and tabs.
• Options are not case-dependent.

UNIFACE V7.2

88 (Oct 1999) Overview of driver options (USYS$ORA_PARAMS)

The valid options are listed in table 10-1:

Table 10-1 Driver options for the ORA driver. part 1 of 3

Long format Short
format

Description

u2 default mapping u2dm Use packing code mapping compatible with default
mapping of U2.1 ORA/ORT driver. See section 8.2
for more information. Only supported to facilitate
migration. May be discontinued in future versions of
UNIFACE.

u2 enhanced_mapping u2em Use packing code mapping compatible with
enhanced_mapping of U2.1 ORA/ORT driver. See
section 8.2 for more information. Only supported to
facilitate migration. May be discontinued in future
versions of UNIFACE.

u2 enhanced_mapping_2 u2em2 Use packing code mapping compatible with
enhanced_mapping_2 of U2.1 ORA/ORT driver. See
section 8.2 for more information. Only supported to
facilitate migration. May be discontinued in future
versions of UNIFACE.

map fixed length to variable fv Map all character strings to VARCHAR2. Do not use
CHAR. Only supported to facilitate migration. May be
discontinued in future versions of UNIFACE. See
section 8.2 for more information.

disable packages dpa Do not generate or use stored packages. See section
6.6 for more information.

ignore missing packages im Use dynamic SQL when package is missing. See
section 6.6 for more information.

disable segmented fields dsf Disable BLOB support. Map fields with segmented
interface into the variable portion of the record. See
section 8.2 for more information. This option is
ignored by the U4.0 and U5.0 drivers because the
drivers handling of segmented fields makes it
redundant.

upgrade packages up Generate only packages in CTU, not tables and
indexes. See section 6.6 for more information.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 89

array fetch size <number> af <n> Minimum size of array when using ORACLE array
fetching. Default is platform-specific (typically 10).
Range of valid values is 1 through 32767. Causes
dynamic memory allocation of approximately (<n> +
1) * 15 kilobytes. Refer to section 4.6.2 for more
information.

fixed array size fa Use exactly array size specified with option ‘array
fetch size’. Do not increase array size for small
records. See section 4.6.2 for more information.

step size <number> ss <n> Recommended step size for UNIFACE stepped hitlist

mechanism. The range of valid values is from 0
through

32767. 0 means that the stepped hitlist mechanism is

disabled. See section 4.6.2 for more information.

disable hint first_rows dhfr Do not generate the optimizer hint FIRST_ROWS.

disable escape de Do not use ESCAPE clause with LIKE operator.
Causes incorrect behavior of retrieve profiles. See
section 4.3.1 for more information. Only supported to
facilitate migration. May be discontinued in future
versions of UNIFACE.

support obsolete 3gl services os Respond to ulda and uopenflag set by
user-defined 3GL. Only supported to facilitate
migration. May be discontinued in future versions of
UNIFACE.

disable precompiler connect dpc Use OCI instead of precompiler interface for first
logon path. This option is ignored by the U4.0 and
U5.0 drivers because they cannot connect using the
precompiler interface.

disable checks dc Skip the run-time consistency checks for the storage
formats when the table is opened, and for the major
or minor version when packages are used. Use with
care. See section 3.3.5 and section 6.6 for more
information.

Table 10-1 Driver options for the ORA driver. part 2 of 3

Long format Short
format

Description

UNIFACE V7.2

90 (Oct 1999) Overview of driver options (USYS$ORA_PARAMS)

The following are the limitations on combining driver options:

• Only one of u2 default mapping or u2 enhanced_mapping or
u2 enhanced_mapping_2 can be set at any one time.

• When u2 default mapping or u2 enhanced_mapping or
u2 enhanced_mapping_2 is set, the following driver options are
either already implied or not applicable. They cannot, therefore, be
specified. They are:
disable packages
disable segmented fields
ignore missing packages
upgrade packages
map fixed length to variable

• The following combinations of options are not valid:
disable packages and ignore missing packages
disable packages and upgrade packages
disable checks and ignore missing packages

The following driver errors may be generated because of incorrect
assignments to USYS$ORA_PARAMS:

open cursors <number> oc n Maximum number of cursors per logon path which
may be explicitly opened. Default is 45. Absolute
minimum is four. Realistic minimum is two per open
table plus one per segmented field. Maximum is the
value of the OPEN_CURSORS initialization
parameter of the ORACLE server, minus some
cursors to account for recursive cursors opened by
ORACLE. See section 4.6.1 for guidelines.

disable foreign key rules df Disabling the UNIFACE implementation of the CAS
and NULL foreign key rules on delete of a row in a
one table. ORACLE handles the referential integrity
rules.

disable rowid dri Disable the use of Rowids. The driver uses the
primary key to identify a record. This enables the
driver to handle entities which are accessed through
ORACLE gateways.

multi byte multi byte Enables ORACLE for multibyte character sets.

Table 10-1 Driver options for the ORA driver. part 3 of 3

Long format Short
format

Description

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 91

ORACLE Driver Error [-7]: Value out of range: value

ORACLE Driver Error [-8]: Syntax error or illegal value in USYS$ORA_PARAMS
assignment

ORACLE Driver Error [-9]: Invalid combination of driver options in
USYS$ORA_PARAMS assignment

Some examples of correct USYS$ORA_PARAMS assignments follow:
USYS$ORA_PARAMS = disable packages, oc 100, af 12

USYS$ORA_PARAMS = step size 20, array fetch size 20, fixed array size

USYS$ORA_PARAMS = dhfr, fa, oc 100, de, im, dsf

10.1 multi byte
The multi byte driver option enables entity and field names to be stored
in a multibyte language (such as Japanese). This driver option is not
required to store double-byte data within single-byte entity and field
names. The multi byte driver option has the following format:

USYS$ORA_PARAMS multi byte

See the ORACLE documentation for more information.

When the multi byte option is set, DBMS wildcard literals are not
supported. This option has no effect on UNIFACE wildcards.

The difference between a DBMS wildcard literal and a UNIFACE
wildcard is that a UNIFACE wildcard is translated into the DBMS
wildcard. Wildcard literal support means that if a DBMS wildcard is
included in the actual data, it is not treated as a wildcard.

In other words, if the actual data includes a percent sign (%), and
wildcard literals are supported, the % in the data is treated like a percent
sign and not a wildcard by the DBMS.

UNIFACE V7.2

92 (Oct 1999) Overview of driver options (USYS$ORA_PARAMS)

 UNIFACE V7.2

Chapter

ORACLE Driver Guide (Oct 1999) 93

11 Generic database conversion
procedure
This section describes a generic database conversion procedure. This
procedure should be used in the following circumstances:

• When migrating from one ORA driver version to another (usually
from U2.x to U3.x). You should only perform database conversion if
the migration procedure in chapter 12 Migrating between U2.x, U3.x,
U4.0, and U5.0 instructs you to do so.

• When setting or removing one of the following ORA driver options:
u2 default mapping
u2 enhanced_mapping
u2 enhanced_mapping_2
map fixed length to variable
disable segmented fields

• You only need to convert the tables which are affected when you
change the driver option. As this may include tables in the Repository
and UNIFACE Runtime tables (for example, UOBJ), it can be more
convenient for you to perform the complete conversion on all tables.

• If you need to overcome incompatibilities at the database I/O level
(which can occur when upgrading the UNIFACE version). Only
perform database conversion when you have been instructed to do so.

11.1 The conversion procedure

i
Note: This conversion procedure converts in two stages: from the existing
database to the UNIFACE TRX transfer format, and from TRX to the
desired database. See the UNIFACE online help for more information on
the utilities available for deployment.

UNIFACE V7.2

94 (Oct 1999) Generic database conversion procedure

The conversion procedure distinguishes between the old environment—
the one which you have been using to access the existing databases— and
the new environment, the one which you want to start using. The
environment means to the following:

• The specific version of UNIFACE
• The specific ORA driver version
• The packing code mapping used and the setting of the driver options

which modify the packing code mapping
• The specific version of ORACLE

The main stages of the conversion procedure are summarized as follows:

1. Export all data to the UNIFACE TRX transfer format.
2. Switch to the new environment.
3. Import all data from the UNIFACE TRX format.

i
Note: When you switch from the old to the new environment, you may have
to change environment variables (for example, $usys, ORACLE_HOME,
ORACLE_SID), install a new version of ORACLE, create a new database,
install a new version of UNIFACE or install a new version of the ORA
driver. It is strongly recommended that you install, set up, and test the
new environment before starting the conversion procedure. Make sure that
the old and the new environments can coexist, and that you can switch
smoothly between them.

11.1.1 The full conversion procedure

To carry out the conversion procedure:

1. Identify the tables to be converted. These may include tables in the
Application Objects Repository. See the UNIFACE Reference Manual
for more information.

2. Back up all tables which need to be converted. You may consider this
redundant, as the conversion procedure does not destroy old data, and
the export to TRX format is a backup mechanism in itself. It is
recommended to use this backup only as an extra safety precaution.

3. Switch to the old environment.
4. If the Repository is stored in ORACLE, use the Export Repository

Objects form by selecting Tools–>Export to export the Repository to
TRX.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 95

5. Perform analyze model on all application models describing the
data you want to convert. You must do this before exporting the data.

6. Export all tables which need to be converted, except for UOBJ and the
tables from the Repository. To do this, use the
Deployment–>Database Utilities–>Convert Data form, or the /cpy
command line switch. For example, to export the DEPT.PERSONNEL
table, you must enter the following on the command line:
/cpy ora:dept.personnel trx:

7. Switch to the new environment.
8. Create the Repository in ORACLE, using the SQL scripts provided in

the distribution kit. See section 2.1 SQL scripts for creating the
Application Objects Repository for more information.

9. If the Repository was exported, as in step 4, use the Tools–>Import
form to import the Repository from TRX. Run /con and /all on the
command line to analyze the application models and to compile all
global objects. See the UNIFACE Reference Manual for more
information on these command line switches.

10. Perform analyze model on all application models describing the tables
you want to re-create. You must do this before using the Create Table
utility.

11. Use the Create Table utility to generate SQL scripts which will create
your databases. Note that a number of driver options affect the
behavior of the Create Table utility with the ORA driver. See
section 2.2.1 Create Table utility, for more information. Use one of the
ORACLE utilities SQL*Plus or SQL*DBA to execute the generated
script.

12. Import the tables that you exported in step 6 using the
Deployment–>Database Utilities–>Convert Data form, or the /cpy
command line switch. For example, to import the dept.personnel
table, you must enter the following on the command line:
/cpy trx:dept.trx ora:

13. Depending on how UOBJ was used, you may need to recompile global
definitions using /all on the command line. See the UNIFACE
Reference Manual for more information.

14. Rebuild and test your applications in the new environment. Note that
installing a new ORA driver version may require that you relink all
applications which use the driver. However, this depends on your
operating system.

UNIFACE V7.2

96 (Oct 1999) Generic database conversion procedure

 UNIFACE V7.2

Chapter

ORACLE Driver Guide (Oct 1999) 97

12 Migrating between U2.x, U3.x, U4.0,
and U5.0
This section explains the migration procedure from the U2.x ORA/ORT
driver to the U3.x drivers, as well as the migration from U3.x to the U4.0
and U5.0 drivers. The overall structure of the migration procedure is
described below. Many references are given to other sections such as for
detailed information on conversion steps, driver options for backward
compatibility and so on.

Use this chapter as your guide through the migration procedure.

12.1 Migrating from U2.x to U3.x
This section describes the migration procedure to migrate from a U2.x
driver to a U3.x driver.

12.1.1 The migration procedure

The description of the migration procedure given here assumes that both
the U2.x and the U3.x ORA driver are installed and available in your
environment. Verify that they are installed before proceeding with the
migration procedure.

Preparing to migrate

Before carrying out the migration procedure, you must complete the
following steps:

UNIFACE V7.2

98 (Oct 1999) Migrating between U2.x, U3.x, U4.0, and U5.0

1. Review your application models and applications for incompatibilities
which can arise. In most cases, you can solve incompatibilities either
by upgrading your application model or application, or by setting a
specific driver option for backwards-compatible behavior. See
section 12.1.4 Compatibility problems, for a detailed description.

2. Review and modify assignment files, as the U2.x and U3.x drivers are
incompatible with respect to assignment files. See section 12.1.5
Review and modify assignment files for more information.

Depending on which driver you are currently using, read the relevant
section on the methods you can use to overcome the incompatibility
between your existing databases and the U3.x ORA driver.

12.1.2 Migrating from the U2.0 ORA/ORT driver

If you are currently using the U2.0 ORA/ORT driver with ORACLE6,
choose one of the following methods to overcome the incompatibility
between your existing databases and the U3.x driver:

• The conversion method
• The backward-compatibility method

The conversion method

Convert your existing databases using the generic database conversion
procedure. In this case, all new functionality will be available.

Using this method, perform the following two migrations at the same
time:

• Migration from ORACLE6 to ORACLE7.x or 8
• Migration from the U2.0 ORA/ORT driver to the U3.x driver

See chapter 11 Generic database conversion procedure for a full
description of converting databases.

Backward-compatibility method

Perform the following steps to use the backward-compatibility method:

1. Migrate from the U2.0 ORA/ORT driver with ORACLE6 to the U2.1
ORA/ORT driver with ORACLE7.x or 8.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 99

2. Set one of the following driver options with the U3.x driver, which
makes it fully backward compatible with the U2.1 driver with respect
to database I/O:
u2 default mapping
u2 enhanced_mapping
u2 enhanced_mapping_2
Choose the option which is consistent with the option in use by the
U2.1 driver. See chapter 10 Overview of driver options
(USYS$ORA_PARAMS) for information on the consistent option
combinations.

If you migrate in this way, both stored package and BLOB functionality
are not supported in your new database. When you use this migration
path, the U2.1 ORA/ORT and the U3.x ORA drivers can be used
interchangeably to access the same database.

i
Note: It is strongly recommended that you use the conversion method. The
only advantage to the backward-compatibility method is that you may be
able to avoid a generic database conversion procedure in some
circumstances. The migration procedure for the backward-compatibility
method is much more complex.

12.1.3 Migrating from the U2.1 ORA/ORT driver

If you are currently using the U2.1 ORA/ORT driver with ORACLE7.x or
8, choose one of the following methods to overcome the incompatibility
between your existing databases and the U3.x driver:

• The conversion method
• The backward-compatibility method

The conversion method

Convert your existing databases using the generic database conversion
procedure. In this case all new functionality will be available. Once you
have performed this conversion, the U2.1 driver can no longer be used to
access your databases.

See chapter 11 Generic database conversion procedure for a full
description of converting databases.

UNIFACE V7.2

100 (Oct 1999) Migrating between U2.x, U3.x, U4.0, and U5.0

The backward-compatibility method

Set one of the following driver options with the U3.x driver, which makes
it fully backward compatible with the U2.1 driver with respect to
database I/O:

u2 default mapping
u2 enhanced_mapping
u2 enhanced_mapping_2

Choose the option which is consistent with the option in use by the U2.1
driver. See chapter 10 Overview of driver options
(USYS$ORA_PARAMS), for information on the consistent option
combinations.

If you migrate in this way, both stored package and BLOB functionality
are not supported in your new database. When you use this migration
path, the U2.1 ORA/ORT and the U3.x driver can be used
interchangeably to access the same database.

i
Note: It is strongly recommended that you use the conversion method.
However, you may want to use the backward-compatibility method to test
your applications with the U3.x ORA driver and investigate compatibility
problems.

12.1.4 Compatibility problems

There are compatibility problems which can arise when migrating from
the U2.x to the U3.x driver.

$dberror

You must review all applications which rely on the interpretation of ORA
driver errors returned in the $dberror Proc variable. If your
applications do not rely on $dberror, you can ignore this.

Driver error numbers returned in $dberror are defined independently
for the U2.x and U3.x driver. Applications which rely on the
interpretation of driver errors in $dberror must be reviewed and
modified for use with the U3.x driver. See chapter 14 Error messages for
an overview of the most important driver error messages.

It is recommended that you do not design applications which rely on the
interpretation of specific driver error numbers in $dberror, as such
errors are not generally meaningful to an application.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 101

ORACLE error numbers are passed unchanged in $dberror, both with
the U2.x and the U3.x driver.

Fixed-length character strings

This section refers to incompatibilities caused by the conversion method
of migration. If you use the backward-compatibility method, you can
ignore this section.

By default, the ORA U3.x driver maps the C and U packing codes with
the S and SS data types to the fixed-length Char storage format, and it
maps the VC and VU packing codes to the variable-length Varchar2
storage formats. The U2.x driver, however, maps packing codes to the
variable-length Char storage format in ORACLE6 and to the
variable-length Varchar2 storage format in ORACLE7.3 and 8. This can
unintentionally result in variable-length Char columns in ORACLE6.0,
or variable-length Varchar2 columns in ORACLE7.x or 8, being
converted to fixed-length Char columns in ORACLE7.x or 8 when a
database is converted from the U2.x driver to the default mapping of the
U3.x driver.

The best solution to this problem is to change the packing code
definitions in the application model from C to VC, and U to VU, since this
reflects the intended mapping to variable-length storage techniques.

Do this by changing the packing code in the application model before you
perform the generic database conversion (see chapter 11 Generic
database conversion procedure for more information).1 This procedure is
quite safe as the C and VC (and U and VU) packing codes are equivalent
when used with the U2.x driver.

Alternatively, the map fixed length to variable driver option can be
set with the U3.x ORA driver, causing all fields to be mapped to the
Varchar2 storage format that would otherwise be mapped to the Char
storage format.

The map fixed length to variable driver option is supported solely
for the purpose of allowing a simple migration to the U3.x ORA driver,
and it may be discontinued in a future version of UNIFACE. It is
recommended that you change the application model packing code
definitions of string fields (S and SS data types) from C and U to VC and
VU, respectively, when the variable-length storage technique is
intended.

1. If you wait until after you have created the database, you must change the packing code in the application
model and carry out data conversion from the Char to the Varchar2 storage format in the ORACLE database.

UNIFACE V7.2

102 (Oct 1999) Migrating between U2.x, U3.x, U4.0, and U5.0

Segmented fields

This section refers to possible incompatibilities caused by the conversion
method of migration when your application models include segmented
fields. If you use the backward-compatibility method, you can ignore this
section.

By default, the U3.x ORA driver maps segmented field packing codes to
the Long or Long Raw storage formats (BLOB support). This can cause
incompatibility problems, as the Long and Long Raw storage formats
have the following limitations:

• There can be only one Long or Long Raw field per base table. For
example, an entity in an application model with both an S,SC* and an
S,C* field caused no problems with the U2.x ORA/ORT driver, as
UNIFACE mapped both fields into one Long field using UNIFACE
proprietary variable-length techniques. With the U3.x driver,
however, the table would have two Long columns, causing the driver
to generate the following error when an attempt is made to create the
table:
ORACLE driver error [-87]: The table would contain more than one LONG or
LONG RAW column.

• ORACLE supports segmented read access to Long and Long Raw
fields, but does not support segmented write access. For that reason,
UNIFACE must use operating-system dynamic memory allocation to
obtain a storage area as large as the complete segmented field
(theoretical limit two gigabytes), when a segmented field is being
inserted or updated. Since there may be platform-specific memory
limitations, this may cause applications which worked perfectly with
the U2.x driver to fail.

These compatibility problems can be overcome by setting the driver
option disable segmented fields with the U3.x ORA driver, which
causes segmented fields to be mapped into the UNIFACE proprietary
variable-length techniques, in the same way that the U2.x driver does.

Array fetching

When working with the U3.x driver, UNIFACE allocates additional
memory to improve performance. This section contains information on
reducing memory usage, rather than improving performance.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 103

By default, UNIFACE uses ORACLE array fetching with a value of at
least 10 for the array size (on most operating systems) when the stepped
hitlist is being built. This reduces the client/server communication
overhead, at the cost of additional memory usage by the ORA driver.
With the U2.x driver, array fetching is used only to a very limited extent,
without making use of additional memory.

If you want to reduce memory usage rather than communication
overhead, the array fetch size number driver option can be set to
reduce the array size to the minimum value of 1. This still allocates some
additional memory.

Stepped hitlist mechanism

You can avoid a change in the behavior of the UNIFACE stepped hitlist
mechanism when migrating from the U2.x ORA/ORT driver to the U3.x
driver.

By default, the U3.x ORA driver makes optimal use of the memory that
is allocated for ORACLE array fetching. The size of the allocated memory
is calculated based on the largest possible record. When smaller records
are fetched, the array fetch size is automatically increased to reduce the
client/server communication overhead as much as possible. Since the
step size of the UNIFACE stepped hitlist must be a multiple of the actual
array fetch size computed, the step size can be very large. Furthermore,
since the actual array size depends on the size of the record, the step size
may vary for different tables.

This side effect of large and varying step sizes does not occur with the
U2.x driver.

The fixed array size option can be set to force UNIFACE to use
exactly the array size specified with the array fetch size option,
rather than computing the maximum array size dynamically.

ESCAPE clause

There can be incompatibility when existing applications rely on the use
of ORACLE wildcard characters in UNIFACE retrieve profiles.

By default, the U3.x driver uses the ESCAPE clause with the LIKE
operator to stop ORACLE wildcard characters, which occur as literal
characters in UNIFACE retrieve profiles, from being interpreted. The
U2.x driver, however, does not generate the ESCAPE clause. Note that
existing applications may have unintentionally relied on this
characteristic.

UNIFACE V7.2

104 (Oct 1999) Migrating between U2.x, U3.x, U4.0, and U5.0

When the disable escape driver option is set, UNIFACE does not
generate the ESCAPE clause. This option is supported solely to allow a
simple migration to the U3.x driver, and its use may be discontinued in
a future version of UNIFACE. It is recommended that you review and
modify all applications that use ORACLE wildcard characters in
UNIFACE retrieve profiles.

See section 4.3.1 Retrieve profiles for a detailed description of the ESCAPE
clause, and for some examples on how it is used by UNIFACE.

Special 3GL services for ORACLE

There can be incompatibilities when user-defined 3GL accesses
ORACLE:

• The U2.x ORA driver provided some undocumented features to allow
user-defined 3GL to access ORACLE on the same logon path as the
ORA driver using the Pro*C precompiler interface. The services
provided by the ORA driver for user-defined 3GL have been
formalized. These 3GL services are described in a read me file
provided with the U3.x driver.

• If the support obsolete 3gl services driver option is set, the
U3.x driver supports some of 3GL services as provided by the U2.x
driver. These are described in the read me file provided with the U3.x
driver. This option is supported solely to allow a simple migration to
the U3.x driver, and its use may be discontinued in a future version
of UNIFACE. It is recommended that you upgrade the user-defined
3GL to the interface described in the read me file.

By default, the U3.x driver creates the first logon path to ORACLE with
the Pro*C precompiler interface. This allows user-defined 3GL to access
ORACLE on this connection using the precompiler interface. Although
this is completely transparent for most applications, it may cause an
incompatibility with existing user-defined 3GL which creates the default
connection.

See the read me file provided with the U3.x driver for more information.
If the disable precompiler connect driver option is set, UNIFACE
only makes use of the OCI interface to create non-default connections,
allowing user-defined 3GL to create the default connection.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 105

Number of cursors opened

Statement caching and cursor management has been completely
redesigned in the U3.x ORA driver. For this reason, you must reconsider
the number of cursors you allow UNIFACE to open. The
$MAXCURSORSORA assignment supported in the U2.x ORA/ORT driver
must be replaced by the open cursors driver option in the U3.x ORA
driver.

The U3.x driver no longer supports $MAXCURSORSORA. When it is
encountered, the ORA driver ignores it.

The $MAXCURSORSORA assignment is replaced by the
open cursors number driver option in the USYS$ORA_PARAMS
assignment.

i
Note: The statement caching and cursor management in the U3.x ORA
driver have been redesigned; the open cursors driver option is not
interpreted in the same way as the $MAXCURSORSORA assignment was in
the U2.x driver. You should not assign the value that was previously
assigned to $MAXCURSORSORA to open cursors. See section 4.6.1
Cursors and statement caching for more information on the open
cursors driver option.

12.1.5 Review and modify assignment files

The U2.1 ORA/ORT and the U3.x driver are incompatible with respect to
assignment files. Existing assignment files must be reviewed and
modified for use with the U3.x driver. Furthermore, it is not possible for
the U2.1 and the U3.x drivers to read the same USYS$ORA_PARAMS
assignment. If the U2.1 and the U3.x drivers are both used on the same
platform, you must arrange for the applications to read
USYS$ORA_PARAMS from different assignment files. See the UNIFACE
Reference Manual for more information on assignment files.

Review all assignment files which are read by your applications with the
ORA driver. Check both the global assignment files (usys.asn and
psys.asn in the UNIFACE installation directory), and the local
assignment files, including idf.asn and psv.asn.

UNIFACE V7.2

106 (Oct 1999) Migrating between U2.x, U3.x, U4.0, and U5.0

The assignment file incompatibilities are:

• The USYS$ORA_PARAMS assignment supports many new options, and
old options are renamed. See chapter 10 Overview of driver options
(USYS$ORA_PARAMS) for a complete overview of the driver options
for the U3.x driver.

• The $MAXCURSORSORA assignment is ignored by the U3.x driver, and
is replaced by the open cursors option in the USYS$ORA_PARAMS
assignment.

• The U2.1 ORA/ORT driver requires a user name and password which
you enter when logging on to ORACLE. The U3.x driver, on the other
hand, allows ORACLE automatic logons (without a user name and
password). This causes the application to behave differently. For
example, when no logon path information is provided, the U2.1 driver
displays the DBMS Logon form, whereas UNIFACE with the U3.x
driver attempts an automatic logon. This incompatibility can be
overcome by using question marks in the logon path specification.

• The U2.x ORA/ORT driver allowed the database field in the logon
path specification to be preceded by the at (@) sign. This is not
allowed by UNIFACE with the U3.x driver.

Table 12-1 describes how to convert existing assignments used with the
U2.1 driver to assignments suitable for the U3.x driver when the two
versions of the driver have to access the same database:

Table 12-1 How to change U2.1 driver assignments to U3.x driver assignments.

U2.1 ORA/ORT U3.x

$maxcursorsora = n USYS$ORA_PARAMS = open cursors n

No USYS$ORA_PARAMS USYS$ORA_PARAMS = u2 default mapping

USYS$ORA_PARAMS = no_check USYS$ORA_PARAMS = u2 default mapping,
disable checks

USYS$ORA_PARAMS = enhanced_mapping USYS$ORA_PARAMS = u2 enhanced_mapping

USYS$ORA_PARAMS = enhanced_mapping,
no_check

USYS$ORA_PARAMS = u2 enhanced_mapping,
disable checks

USYS$ORA_PARAMS = enhanced_mapping_2 USYS$ORA_PARAMS = u2 enhanced_mapping_2

USYS$ORA_PARAMS =
enhanced_mapping_2, no_check

USYS$ORA_PARAMS = u2 enhanced_mapping_2,
disable checks

No $ORA assignment or $ORA = ORA:|| $ORA = ORA:|?|?

$ORA = ORA:@t:host:sid|user|password $ORA = ORA:t:host:sid|user|password

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 107

12.2 Migration from the U3.x to the U4.0 or U5.0 driver
Application models and assignment files which work with the U3.x
drivers will work with the U4.0 or U5.0 driver. However, the following
are incompatibilities between the U3.x drivers and the U4.0 and U5.0
drivers:

• Rowid
• Converting data with segmented fields
• Accessing ORACLE from 3GL

12.2.1 Converting data with segmented fields

When a new entity containing a segmented field is created, the U3.x,
U4.0, and U5.0 drivers take the same user input. However, the U4.0 and
U5.0 drivers do not limit you to one segmented field per entity, since this
restriction has been removed in ORACLE8.

If an application contains one or more segmented fields, the U4.0 and
U5.0 drivers create tables in which these are held as CLOB or BLOB data
types. When converting data, the driver expects existing tables to hold
these fields as CLOB or BLOB data types. However, the U3.x driver
creates tables in which segmented fields are held as Long or Long Raw
data types and expects existing tables to conform to this. Therefore, the
tables corresponding to any existing entities which contain segmented
fields must be converted.

The conversion process for tables with segmented fields is very similar to
the process described in section 11.1 The conversion procedure, however,
several extra steps are added. See section 11.1 The conversion procedure
to learn how to set up your new U4.0 or U5.0 environment alongside your
old environment and back up your data.

UNIFACE V7.2

108 (Oct 1999) Migrating between U2.x, U3.x, U4.0, and U5.0

Complete the following steps to carry out the conversion procedure:

1. Identify the tables to be converted. These may include tables in the
Application Objects Repository. See the UNIFACE Reference Manual
for more information.

2. Backup all tables which need to be converted. You may consider this
redundant, as the conversion procedure does not destroy old data, and
the export to TRX format is a backup mechanism in itself. It is
recommended to use this backup only as an extra safety precaution.

3. Switch to the old environment.
4. If the Repository is stored in ORACLE, use the Export Repository

Objects form by selecting Tools–>Export to export the Repository to
TRX.

5. Perform analyze model on all application models describing the
data you want to convert. You must do this before exporting the data.

6. Export all tables which need to be converted, except for UOBJ and the
tables from the Repository. To do this, use the
Deployment–>Database Utilities–>Convert Data form, or the /cpy
command line switch. For example, to export the DEPT.PERSONNEL
table, you must enter the following on the command line:
/cpy ora:dept.personnel trx:

7. Using SQL*Plus, identify the tables and packages associated with the
entities to be changed. The tables normally have the same name as
the entities and the package names are the entity names with ‘$U’
appended. This may be confirmed by entering ‘select object_name,
object_type from user_objects;’. This instruction will also list
constraints. These are automatically dropped when you drop a table.

8. Using SQL*Plus, drop the tables and associated packages. This is
done by issuing the instructions ‘drop package <package name>;’
and ‘drop table <table name>’.

9. Switch to the new environment.
10. Create the Repository in ORACLE, using the SQL scripts provided in

the distribution kit. See section 2.1 SQL scripts for creating the
Application Objects Repository for more information.

11. If the Repository was exported, as in step 4, use the Tools–>Import
form to import the Repository from TRX. Run /con and /all on the
command line to analyze the application models and to compile all
global objects. See the UNIFACE Reference Manual, for more
information on these command line switches.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 109

12. Perform analyze model on all application models describing the
tables you want to re-create. You must do this before using the Create
Table utility.

13. Use the Create Table utility to generate SQL scripts which will create
your databases. Note that a number of driver options affect the
behavior of the Create Table utility with the ORA driver. See
section 2.2.1 Create Table utility, for more information. Use one of the
ORACLE utilities SQL*Plus or SQL*DBA to execute the generated
script.

14. Import the tables that you exported in step 6. To do this, use the
Deployment–>Database Utilities–>Convert Data form, or the /cpy
command line switch. For example, to import the dept.personnel
table, you must enter the following on the command line:
/cpy trx:dept.trx ora:

15. Depending on how UOBJ was used, you may need to recompile global
definitions using /all on the command line. See the UNIFACE
Reference Manual for more information.

16. Rebuild and test your applications in the new environment. Note that
installing a new ORA driver version may require that you relink all
applications which use the driver. This depends on your operating
system.

12.2.2 Accessing ORACLE from 3GL

For more information, see chapter 13 Accessing ORACLE from 3GL.

UNIFACE V7.2

110 (Oct 1999) Migrating between U2.x, U3.x, U4.0, and U5.0

 UNIFACE V7.2

Chapter

ORACLE Driver Guide (Oct 1999) 111

13 Accessing ORACLE from 3GL

13.1 U3.x service functions
This section describes the use of the 3GL service functions provided by
the U3.x ORACLE database drivers for use by 3GL routines which access
ORACLE.

13.1.1 U3.x ORA versus U2.0 ORA

The ORACLE database drivers provide a number of services for
user-defined 3GL to access ORACLE in cooperation with the driver. With
the U3.3 driver for ORACLE7.3, these services are formalized and
extended. The U3.3 driver supports all 3GL services offered by the U2.x
drivers, but some services are only available when the option support
obsolete 3gl services is set on in the USYS$ORA_PARAMS assignment
setting.

i
Note: The support obsolete 3gl services option is supported only to
facilitate migration from a U2.x to the U3.x driver, and it may be
discontinued in a future version of UNIFACE. It is recommended you
upgrade your 3GL to the superior services provided by a U3.x driver.

13.1.2 Pro*C versus OCI

It is possible to use the Pro*C precompiler interface, or the ORACLE Call
Interface (OCI), or both in the same application.

UNIFACE V7.2

112 (Oct 1999) Accessing ORACLE from 3GL

13.1.3 Same logon path versus independent logon

Your 3GL functions can access ORACLE either on the same logon path
as the ORA driver, or on an independent logon path (ORACLE
connection):

• When you access ORACLE on the same logon path as your ORA
driver, the database operations performed by your 3GL routines are
in the same transaction as those of the ORA driver.

• When you open an independent concurrent connection, the database
operations performed by user-defined 3GL and those of the ORA
driver are in two independent transactions.

i
Note: On some systems, ORACLE does not support multiple concurrent
connections, for example, single-user ORACLE under MS-DOS. Check
your ORACLE documentation for more information.

13.1.4 First logon path

When you use your own 3GL routines with ORACLE, you must keep in
mind the distinction between the first logon path to ORACLE, and
subsequent concurrent logon paths. The first logon path is defined as:

• The first path opened after the application starts or
• The first logon path to ORACLE opened after the previous first logon

path was closed

Note that this means it is possible to have a situation where there is no
first logon path open. For example, consider the following sequence of
events:

• A logon path to ORACLE is opened at 4GL level. This is the first logon
path.

• A second concurrent logon path to ORACLE is opened via 4GL or
3GL.

• The first logon path is closed at the 4GL level. This means there is no
longer a first logon path, even though a logon path is still open.

• A third logon path to ORACLE is opened. This is now considered the
first logon path.

Only the first logon path of the ORA driver is accessible by user-defined
3GL.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 113

13.1.5 Requirement for sharing a connection with the ORA driver

When your 3GL routines access ORACLE on the same connection as the
ORA driver, you must meet the following requirements:

• Do not disconnect from ORACLE in your 3GL routines; instead, close
the logon path to ORACLE at the 4GL level.

• Do not commit or rollback in user-defined 3GL; instead, commit
and rollback on the logon path at the 4GL level.

• Ensure that the sum of the following items does not exceed the
maximum number of cursors allowed by the ORACLE server:

• The number of cursors opened by the ORA driver
• The number of cursors opened by user-defined 3GL

You may want to increase the OPEN_CURSORS initialization
parameter of ORACLE. The maximum number of cursors opened by
the U2.0 ORA driver is controlled by the $MAXCURSORSORA
assignment setting. The maximum number of cursors opened by a
U3.x ORA driver is controlled by the open cursors option of the
USYS$ORA_PARAMS assignment setting.

• In most cases, user-defined 3GL can access the connection only after
the ORA driver has successfully created the first logon path to
ORACLE. The technique for the ORA driver, described in section 13.2
Using a U3.x ORA driver, requires that your 3GL routine creates the
connection before the ORA driver logs on. In both cases, coordination
of the order of events at the 3GL level and at the 4GL level may be
required.

• Do not attempt to access the connection when the first logon path no
longer exists.

• Your 3GL routines are responsible for closing the ORACLE cursors
they have opened before the logon path is closed.

UNIFACE V7.2

114 (Oct 1999) Accessing ORACLE from 3GL

13.2 Using a U3.x ORA driver

i
Note: When you are using a U3.x driver, the driver must establish the first
logon path to ORACLE. If necessary, force the driver to create the first
logon path by opening the path at the 4GL level.

By default, a U3.x driver creates the first logon path to ORACLE using
the Pro*C precompiler interface. The first logon path is associated with
the default connection; that is, it is created with a CONNECT statement
without an AT clause.

13.2.1 Accessing the driver’s connection with the Pro*C interface

To access ORACLE on the same connection as the ORA driver using the
Pro*C precompiler interface, your 3GL routines can access the first logon
path of the ORA driver simply by executing SQL statements without an
AT clause.

Do not set the ORA driver option disable precompiler connect, since
this makes it impossible to access ORACLE on the same connection as
the ORA driver using the precompiler interface.

13.2.2 Accessing the driver’s connection with the OCI interface

To access the driver’s connection to ORACLE, your 3GL routine must
obtain the address of the LDA of the connection. You can use the 3GL
service functions UGETULDA and UGETUOPENFLAG for this purpose. See
the 3GL Interface Manual for more information on these functions.

You must use the address of the LDA returned by UGETULDA in
subsequent calls to the OCI routine open() to open cursors. Do not make
a private copy of the LDA, as this will confuse ORACLE.

13.2.3 Accessing an independent connection with the Pro*C interface

User-defined 3GL can create either the precompiler default connection,
or a nondefault connection. The default connection allows you to issue
embedded SQL without explicitly identifying a connection.

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 115

To create the precompiler default connection, set the ORA driver option
disable precompiler connect with the assignment setting
USYS$ORA_PARAMS. If you do not set this option, the ORA driver creates
its first logon path with the precompiler interface, and uses the default
connection for this purpose. This can cause obscure ORACLE errors to
occur either in your 3GL routines or in the ORA driver, since it cannot
create more than one default connection. With the disable
precompiler connect option set, the ORA driver uses the OCI routine
orlon() to create an independent connection for the first logon path.

A default connection is made by a CONNECT statement that has no AT
clause. For example:

EXEC SQL CONNECT :user_password USING :database;

The USING clause is optional. Refer to your ORACLE precompiler
documentation for more information.

Alternatively, your 3GL can make one or more non-default connections
using a CONNECT statement with an AT clause. Use an AT clause with
SQL statements which must be executed on this connection. When your
3GL routine makes a non-default connection, you do not need to set the
driver option disable precompiler connect. Refer to your ORACLE
precompiler documentation for more information on the use of the AT
clause.

13.2.4 Accessing an independent connection with the OCI interface

To create an independent connection, define a Host Data Area (HDA) and
a Logon Data Area (LDA) and call the OCI function orlon(). Do not use
the OCI routine olon() to do this.

UNIFACE V7.2

116 (Oct 1999) Accessing ORACLE from 3GL

13.2.5 Example using U3.x ORA driver

The following example (which is not a complete program) illustrates the
use of the functions UGETULDA and UGETUOPENFLAG with the U3.x ORA
driver. (These functions are described in the 3GL Interface Manual.)
#include "oratypes.h" /* The location of ORACLE 7.0 include files for OCI */
#include "ocidfn.h" /* applications is platform specific. Refer to your */
#include "ociapr.h" /* ORACLE documentation for more information. */

long my3gl(void)
{

/* Declare the service functions of the ORACLE driver. */
unsigned char *UGETULDA();
unsigned char *UGETUOPENFLAG();

unsigned char OpenFlag;
unsigned char *LogonDataArea;

sword ReturnStatus;

/* Define a cursor. */
struct cda_def Cursor;

/* Dereference address returned by UGETUOPENFLAG() to get value of flag. */
OpenFlag = *UGETUOPENFLAG();

if (OpenFlag != ’\0’)
{

/* Get pointer to the ORACLE Logon Data Area. */
LogonDataArea = UGETULDA();

ReturnStatus = oopen(&Cursor, (struct lda_def *)LogonDataArea,
 (text *)0, (sword)-1, (sword)-1, (text *)0,
 (sword)-1);

if (ReturnStatus != 0)
{ /* An abnormal error has occurred. Print an error message,

including the return code in the Cursor Data Area
(element Cursor.rc).

*/
}
/* Continue normal processing using the cursor. */

}
 else
 { /* An error has occurred: the first logon path is not open. Check

your 4GL coding.
 */

 }
}

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 117

13.3 Using a U4.0 or U5.0 driver
The U4.0 and U5.0 drivers do not support Pro*C logon to the same path
because this facility is not available using the ORACLE8 OCI functions.
The UGETULDA and UGETUOPENFLAG functions are available for users
who want to write functions which use OCI calls. In addition, two
functions named URETURNULDA and UGETUSVCCTX are available.
URETURNULDA must be used wherever UGETULDA is used. UGETUSVCCTX
returns the service context for use in functions which use ORACLE8 OCI
calls.

UGETUOPENFLAG can be used whether your function uses ORACLE7 or
ORACLE8 OCI calls. The flag indicates whether UNIFACE has
successfully logged on. The logon uses ORACLE8 functions to initialize
handles rather than the LDA.

Where ORACLE7 OCI functions are to be used, the service context
handle is converted into an LDA for return by UGETULDA. At the end of
the user-written function which calls UGETULDA, you must call
URETURNULDA, which converts the LDA back into a service context.

The synopsis of URETURNULDA is as follows:
void URETURNULDA (unsigned char * LogonDataArea);

Where ORACLE8 OCI functions are to be used, UGETUSVCCTX is used to
get the address of the service context handle and UGETUENV is used to get
the environment handle. The synopses are:
OCISvcCtx *UGETUSVCCTX(void);

OCIEnv *UGETUENV(void);

UNIFACE V7.2

118 (Oct 1999) Accessing ORACLE from 3GL

 UNIFACE V7.2

Chapter

ORACLE Driver Guide (Oct 1999) 119

14 Error messages
ORACLE error numbers and driver error numbers are returned in
$dberror. ORACLE error numbers are positive, although negative error
numbers may occur in some ORACLE environments such as PL/SQL.
Driver error numbers are negative. When an ORACLE error or a driver
error has occurred, a descriptive error message is available in the
message frame.

Both the ORA driver and PL/SQL accumulate error messages. This
means that when an error occurs, not only is the original driver or
ORACLE error number returned in $dberror, but you may also see
multiple error messages in the message frame. The most important
driver errors which can occur are listed in table 14-1. ORA driver
internal errors are not listed.

Table 14-1 Errors generated by the ORA driver and their messages. part 1 of 3

$dberror
value

Message

-4 Dynamic memory allocation failed.

-7 Value out of range: value.

-8 Syntax error or illegal value in USYS$ORA_PARAMS
assignment.

-9 Invalid combination of driver options in USYS$ORA_PARAMS
assignment.

-11 User-defined 3GL set uopenflag, but Logon Data Area (ulda) is
invalid.

-13 Maximum number of concurrent logon paths to ORACLE
exceeded.

-15 User-defined 3GL set uopenflag, but obsolete 3GL services are
not enabled.

UNIFACE V7.2

120 (Oct 1999) Error messages

-16 User-defined 3GL set uopenflag, but the driver is already
logged on.

-19 An element in the logon information string is too long.

-20 Syntax error in logon information string.

-23 Request for user name/password (Info mode 1) failed.

-24 User name without password, or password without user name
specified.

-25 Row does not exist.

-27 Selected data too large for SQL Workbench (maximum length
is 8K).

-30 Zero or more than one row(s) were deleted.

-31 Zero or more than one row(s) were updated.

-47 Package created with compilation errors. Query the ORACLE
data dictionary view USER_ERRORS or DBA_ERRORS for
the error messages.

-51 Generated SQL statement too large for internal buffer.

-54 Storage required for I/O buffer exceeds system limits. Reduce
array size.

-55 The table would contain more than one LONG or LONG RAW
column.

-56 The number of columns (plus one for the ROWID) exceeds
ORACLE’s maximum number of select list items.

-60 Number fetched from ORACLE exceeds size constraint of
packing code.

-62 Data was truncated on fetch.

-66 One row expected, but zero or more than one row fetched.

-68 selectdb Proc statement is not supported on segmented fields.
Field name: field_name.

-75 Actual length of LONG or LONG RAW data exceeds platform
specific memory limitation.

-79 No SQL statement to process.

Table 14-1 Errors generated by the ORA driver and their messages. part 2 of 3

$dberror
value

Message

UNIFACE V7.2

ORACLE Driver Guide (Oct 1999) 121

-80 Column has incorrect ORACLE storage format: Table
table_name, Column column_name, expected storage format
storage format, actual storage format is storage format.

-81 No more cursors available for statement processing. Increase
value of ‘open cursors’ in USYS$ORA_PARAMS.

-82 Package does not exist, or is inaccessible: package name.

-83 Major version number of package in the database not
acceptable: Package package_name, major version of
package in database is version_number, current major
package version number of ORA driver is version_number.

-86 Obsolete syntax in logon path specification: ‘@’ preceding
database.

-87 Incorrect number format.

-88 Invalid WHERE clause expression requested (check Proc
u_where).

-89 odescr() OCI routine returned invalid data type code: Data type
returned is not the correct type.

-90 Relationships in ORACLE not supported with a u2 packing
code mapping

Table 14-1 Errors generated by the ORA driver and their messages. part 3 of 3

$dberror
value

Message

UNIFACE V7.2

122 (Oct 1999) Error messages

	Title
	Contents
	1 Introduction
	1.1 Important notes on U3.x, U4.0, and U5.0 drivers
	1.2 Features and enhancements
	1.2.1 U3.x drivers
	1.2.2 U4.0 and U5.0 drivers
	1.2.3 Stored packages
	1.2.4 Statement caching and cursor management
	1.2.5 Improvements in referential integrity implementation
	1.2.6 More storage formats supported
	1.2.7 ORACLE wildcard characters in retrieve profiles
	1.2.8 Mapping of candidate keys
	1.2.9 Number of concurrent logon paths
	1.2.10 Use of ORACLE array fetching
	1.2.11 Step size configuration
	1.2.12 Support for ORACLE automatic logons
	1.2.13 3GL services
	1.2.14 Other features and enhancements

	1.3 ORACLE products supported
	1.3.1 The Pro*C product

	1.4 ORACLE products not supported

	2 Installation
	2.1 SQL scripts for creating the Application Objects Repository
	2.2 Utilities
	2.2.1 Create Table utility
	2.2.2 Create Script utility
	2.2.3 Load Definitions utility

	3 System environment
	3.1 Networking considerations
	3.2 Necessary permissions
	3.3 Records, indexes, tables, and fields
	3.3.1 Location of schema objects
	3.3.2 Naming rules for schema objects
	3.3.3 Primary and candidate keys
	3.3.4 Indexes
	3.3.5 Tables
	3.3.6 Fields
	3.3.7 Definition dependency
	3.3.8 Views

	4 Configuring
	4.1 Driver assignments for UNIFACE system information
	4.2 Paths and logging on
	4.2.1 open and close instructions
	4.2.2 Logon path specification
	4.2.3 Concurrent logon paths
	4.2.4 Logon paths and special services for 3GL
	4.2.5 Driver options affecting logon paths

	4.3 Retrieving data
	4.3.1 Retrieve profiles
	4.3.2 where clause
	4.3.3 u_where clause
	4.3.4 order by qualifier
	4.3.5 selectdb instruction

	4.4 U3.x transaction control
	4.4.1 Transactions
	4.4.2 Locking
	4.4.3 commit and rollback

	4.5 Implementation of segmented interfaces
	4.6 Performance issues
	4.6.1 Cursors and statement caching
	4.6.2 Stepped hitlist

	4.7 Extended driver behavior
	4.8 ORACLE character sets
	4.9 Assignment settings

	5 sql and the SQL Workbench
	5.1 Special considerations for SQL
	5.1.1 $result and $status
	5.1.2 Other considerations

	5.2 Special considerations for PL/SQL
	5.3 Monitoring SQL in the message frame

	6 Stored packages
	6.1 Creating stored packages
	6.2 Stored package version
	6.2.1 Compatibility of package versions
	6.2.2 Packages used by multiple drivers

	6.3 Dependency of packages
	6.4 Dependency of packages on driver options
	6.5 Upgrading the stored packages
	6.5.1 The upgrade procedure

	6.6 Driver options affecting stored packages
	6.6.1 Referential integrity

	7 Service Stored Procedures
	7.1 Component names
	7.2 Parameters
	7.3 USYS$ORA_PARAMS
	7.4 Exception behavior
	7.5 Examples

	8 Data types and packing codes
	8.1 Explanation of ORACLE storage formats
	8.1.1 Char
	8.1.2 Varchar2
	8.1.3 Varchar
	8.1.4 Number
	8.1.5 Date
	8.1.6 Long
	8.1.7 Raw
	8.1.8 Long Raw
	8.1.9 CLOB and BLOB
	8.1.10 Rowid
	8.1.11 Mlslabel and Raw Mlslabel

	8.2 Modify packing code mapping
	8.2.1 The map fixed length to variable option
	8.2.2 The disable segmented fields option

	9 System parameters
	9.1 Environment variables
	9.1.1 ORACLE_HOME
	9.1.2 ORACLE_SID
	9.1.3 TWO_TASK
	9.1.4 NLS_LANG

	10 Overview of driver options (USYS$ORA_PARAMS)
	10.1 multi byte

	11 Generic database conversion procedure
	11.1 The conversion procedure
	11.1.1 The full conversion procedure

	12 Migrating between U2.x, U3.x, U4.0, and U5.0
	12.1 Migrating from U2.x to U3.x
	12.1.1 The migration procedure
	12.1.2 Migrating from the U2.0 ORA/ORT driver
	12.1.3 Migrating from the U2.1 ORA/ORT driver
	12.1.4 Compatibility problems
	12.1.5 Review and modify assignment files

	12.2 Migration from the U3.x to the U4.0 or U5.0 driver
	12.2.1 Converting data with segmented fields
	12.2.2 Accessing ORACLE from 3GL

	13 Accessing ORACLE from 3GL
	13.1 U3.x service functions
	13.1.1 U3.x ORA versus U2.0 ORA
	13.1.2 Pro*C versus OCI
	13.1.3 Same logon path versus independent logon
	13.1.4 First logon path
	13.1.5 Requirement for sharing a connection with the ORA driver

	13.2 Using a U3.x ORA driver
	13.2.1 Accessing the driver’s connection with the Pro*C interface
	13.2.2 Accessing the driver’s connection with the OCI interface
	13.2.3 Accessing an independent connection with the Pro*C interface
	13.2.4 Accessing an independent connection with the OCI interface
	13.2.5 Example using U3.x ORA driver

	13.3 Using a U4.0 or U5.0 driver

	14 Error messages

