
10115087204-01
Revision 1
Mar 1999
CFG

UNIFACE Configuration

Guide

UNIFACE V7.2

UNIFACE V7.2
UNIFACE Configuration Guide
Revision 1

Restricted Rights Notice

This document and the product referenced in it are subject to the following
legends:

© 1997-1999 Compuware Corporation. All rights reserved. Unpublished - rights
reserved under the Copyright Laws of the United States.

U.S. GOVERNMENT RIGHTS-Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in Compuware Corporation
license agreement and as provided in DFARS 227.7202-1(a) and 227.7202-3(a)
(1995), DFARS 252.227-7013(c)(1)(ii)(OCT 1988), FAR 12.212(a) (1995), FAR
52.227-19, or FAR 52.227-14 (ALT III), as applicable. Compuware Corporation.

This product contains confidential information and trade secrets of Compuware
Corporation. Use, disclosure, or reproduction is prohibited without the prior
express written permission of Compuware Corporation.

Trademarks

Compuware is a registered trademark of Compuware Corporation and UNIFACE is a
registered trademark of Compuware Europe B.V. CICS, DB2, IBM, and OS/2 are
trademarks of International Business Machines Corporation. SOLID Server (TM), SOLID
Bonsai Tree (TM), SOLID Remote Control (TM), and SOLID SQL Editor (TM) are
trademarks of Solid Information Technology Ltd. All other company or product names used
in this publication are trademarks of their respective owners.

24-hour online customer support

Pillars of Wisdom is an Internet-based support service which provides real-time
access to a wealth of UNIFACE product and technical information. Features
include online product documentation, technical tips and know-how, up-to-date
platform availability and product fixes. You can obtain full access privileges for
Pillars of Wisdom by completing an online registration form (customer license
information is required) at the following address:
http://uniface.pillars.compuware.com/

Your suggestions and comments about UNIFACE documentation and course
material are highly valued. Please send your reactions to:

Compuware Europe B.V.
Delivery Methods & Practices
P. O. Box 12933
1100 AX Amsterdam e-mail: DM&P-Hotline@nl.compuware.com
The Netherlands fax: +31 (0)20 311-6213

To order UNIFACE publications, contact your UNIFACE representative.

UNIFACE Configuration Guide (Mar 1999) iii

Contents

UNIFACE V7.2

Preface

1 PolyServer
1.1 Introduction to PolyServer . 1-1

1.1.1 How the PolyServer works. 1-2
1.2 Distributed processing versus distributed databases. 1-4

1.2.1 Logical referential integrity . 1-5
1.2.2 Physical referential integrity . 1-6

1.3 Networking processes . 1-6
1.3.1 Which processes get started . 1-6
1.3.2 What a PolyServer process does . 1-7

1.4 Chaining PolyServers . 1-8
1.4.1 Why chain PolyServers? . 1-10
1.4.2 Disadvantages of chaining PolyServers . 1-10

1.5 Network errors. 1-12
1.5.1 Principles of error handling. 1-12
1.5.2 Types of error . 1-13
1.5.3 Testing for network errors in Proc code . 1-16
1.5.4 PolyServer reaction to network errors . 1-16
1.5.5 UNIFACE reaction to network errors . 1-17
1.5.6 Chained PolyServers and network errors . 1-18

1.6 Further information. 1-19
1.6.1 PolyServer communication . 1-19
1.6.2 Network driver communication . 1-20

2 UNIFACE Application Servers
2.1 Introduction . 2-2

UNIFACE V7.2

iv (Mar 1999)

2.2 Synchronous and asynchronous communication . 2-2
2.3 The Message Daemon . 2-3
2.4 The UNIFACE Monitor and Name Server . 2-4
2.5 The Application Server . 2-4
2.6 The Component Server . 2-4
2.7 Chaining Application and Component Servers. 2-5
2.8 Running and verifying the servers . 2-5

2.8.1 Verify that the Message Daemon is running . 2-5
2.8.2 Start the Application Server manually . 2-6
2.8.3 Run pdmon . 2-6
2.8.4 Stop the Application Server using pdmon . 2-7

3 Client and peer-to-peer messaging
3.1 Introduction . 3-1
3.2 Message handling for client instances . 3-2
3.3 Message handling for peer instances . 3-2

4 Assignments for a distributed environment
4.1 Assignments with PolyServer . 4-1

4.1.1 Assignment files for the client environment . 4-3
4.1.2 Assignment files for the PolyServer environment 4-4
4.1.3 Relationships between assignment files . 4-6
4.1.4 Using $REMOTE_path . 4-9
4.1.5 Assigning non-DBMS files on the network. 4-13
4.1.6 Opening a network path using Proc code . 4-13
4.1.7 Chaining PolyServers . 4-15

4.2 Assignments for a distributed environment. 4-17
4.2.1 Assignments on the client side . 4-25
4.2.2 Assignments on the Application Server side . 4-28

4.3 Using the UNIFACE Name Server . 4-29
4.3.1 Assignments on the client side . 4-34
4.3.2 Assignments on the Name Server side . 4-35
4.3.3 Middleware support . 4-37
4.3.4 Transaction Processing . 4-37

5 EcoTOOLS configuration
5.1 Introduction . 5-1
5.2 Using EcoTOOLS monitoring . 5-2
5.3 Limitations . 5-4

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) v

6 Report Writer Interface (RWI) configuration

7 Microsoft Windows configuration

8 UNIX and MPE/iX configuration

9 OpenVMS configuration

10 Macintosh configuration

11 OS/2 configuration

Appendixes
A UNIFACE Server Monitor
B Microsoft Windows initialization files
C X resources
D Compatibility codes
E Security driver

Index

UNIFACE V7.2

vi (Mar 1999)

UNIFACE Configuration Guide (Mar 1999) vii

UNIFACE V7.2

Preface

About this guide
This guide is written for system administrators who are responsible for
configuring the UNIFACE environment used within their organization.
It provides detailed information about the operation of PolyServer,
Application Servers, and other UNIFACE components that you may need
to install and configure.

i
Note: Previous versions of this guide contained specific information on
configuring and troubleshooting operational problems on specific
platforms. To make this information more accessible to people installing
UNIFACE products, product-specific information now appears in the
appropriate installation guide. Platform-specific chapters remain as a
service to readers who are used to looking for information in this guide,
but they make reference to the appropriate installation guide.

Consult the appropriate installation guide for detailed information on
installing and configuring UNIFACE products on a specific platform.

How to use this guide
Read this guide to understand how UNIFACE products work and
interact with each other, their platform, and environment.

UNIFACE V7.2

viii (Mar 1999)

The information in this guide is organized as follows:

Chapter 1 PolyServer

Explains the use of the PolyServer to access data stored on remote hosts.
It includes an introduction to the PolyServer, a comparison between
distributed computing and distributed databases, networking processes
and errors, and the chaining of PolyServers.

Chapter 2 UNIFACE Application Servers

Explains the use of the UNIFACE Application Servers to partition the
execution of your applications across remote servers.

Chapter 3 Client and peer-to-peer messaging

Describes the configuration necessary to support the posting of
asynchronous messages to client or peer component instances.

Chapter 4 Assignments for a distributed environment

Explains the assignment file settings necessary to access data and
non-DBMS files on server (remote) systems. The use of Application
Servers to manage the execution of application components is also
described.

Chapter 5 EcoTOOLS configuration

Describes how to configure your UNIFACE servers and Web applications
to work with EcoTOOLS monitoring.

Appendix A UNIFACE Server Monitor

Describes the use of the UNIFACE Server Monitor to monitor and control
the status of the UNIFACE daemons and processes that are active in
your network.

Appendix B Microsoft Windows initialization files

Presents a complete list of the sections, and their settings, that can be
specified in the Microsoft Windows usys.ini file.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) ix

Appendix C X resources

Presents a complete list of the resources, and their classes, that can be
specified in the xdefault.txt file.

Appendix D Compatibility codes

Presents a complete list of the three-letter compatibility codes used to
indicate a supported platform in V7.2.

Appendix E Security driver

Describes how to implement a custom security driver to replace the
default UNIFACE driver, enabling you to encrypt and decrypt the user
name and password.

Related information
The following UNIFACE documentation contains information that
pertains closely to this guide:

• UNIFACE online help
• UNIFACE Reference Manual
• Proc Language Reference Manual
• Quick Reference Guide
• Installation Guides
• DBMS Driver Guides

Conventions
This section describes the conventions used in the UNIFACE user
documentation.

Keystrokes

Keys that must be pressed sequentially are shown with a space between
the key names. For example, GOLD R.

Keys that must be pressed simultaneously are shown with a plus sign (+)
between the key names. For example, Alt+F4.

UNIFACE V7.2

x (Mar 1999)

Mouse actions

The number and usage of mouse buttons can vary, so the following
conventions for mouse buttons are used:

UNIFACE uses the SELECT and MENU mouse buttons, exclusively. If
your system supports the ADJUST button, you can use it in UNIFACE
(for example, in edit boxes).

The following terms are used in UNIFACE documentation to refer to
mouse actions:

Syntax descriptions

In syntax descriptions:

• Information in Courier font must be provided as shown.
• Information in italics must be replaced by actual data.
• Braces ({}) are used to show optional information.
• Vertical bars (|) are used to separate a list of options where only one

item can be entered.

Conventions for mouse buttons.

Name Default position Action

SELECT Left Activates a control or focuses on an object.
ADJUST Middle Adjusts the selected objects (if supported).
MENU Right Activates a pop-up menu.

Terms for mouse actions.

Term Action

Click Press and release a mouse button.
Double-click Click the SELECT button twice in rapid succession.
Press Press a mouse button without releasing it.
Drag Press the SELECT button over an object, and move the

pointer to a new position before releasing the button.
Select Either of the following:

• Click the SELECT button to give focus to, highlight, or
change the mode of an object.

• Press the SELECT button and move the pointer to draw
a frame around one or more objects before releasing the
button.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) xi

For example, the following syntax description indicates that the
rollback instruction can occur with no following arguments or with
either of the two optional arguments:

rollback {" dbms" | "$ path" }

According to this syntax description, the following forms of the rollback
statement are allowed:

rollback
rollback "SYB"
rollback "$MYPATH"

Pictures of screens

In the generic UNIFACE documentation, unless otherwise stated,
pictures of screens are based on those in a Microsoft Windows 95
environment and are current at the date of publication.

UNIFACE V7.2

xii (Mar 1999)

UNIFACE V7.2

Chapter

UNIFACE Configuration Guide (Mar 1999) 1-1

1 PolyServer
Read this chapter if you intend to access data stored on remote hosts. If
you are running a UNIFACE application that accesses only local data,
this chapter can be skipped.

This chapter describes the PolyServer in detail, and covers the following
topics:

• Introduction to PolyServer
• Distributed processing versus distributed databases
• Networking processes
• Chaining PolyServers
• Network errors
• Further information

1.1 Introduction to PolyServer
Networking in UNIFACE means using PolyServer, a software product
that allows UNIFACE applications to transparently access multiple
DBMSs on remote machines via multiple network protocols.

Fortunately, when understanding how to use networking in UNIFACE,
there is very little new theory to understand. At the minimal level, the
only difference on the client side is that the application assignment file
specifies a network driver instead of a DBMS driver. For the rest, using
networks in UNIFACE is almost completely transparent.

UNIFACE V7.2

1-2 1.1.1 How the PolyServer works (Mar 1999) PolyServer

PolyServer is UNIFACE split in two

The PolyServer splits UNIFACE into two physically separate parts.
These two parts can be located on the same system, but are primarily
intended for use on different systems in a network.

1.1.1 How the PolyServer works

To understand how the PolyServer works, consider how a stand-alone
UNIFACE application works, as illustrated in Figure 1-1. All UNIFACE
modules, drivers, and DBMSs operate on a single system; there is no
network.

Figure 1-1 A stand-alone UNIFACE application.

The application is responsible for temporary data management. It is
responsible for loading components, editing the data, checking local
syntax and other constraints, and so on.

UNIFACE application
Implements logical

functionality

UNIFACE run time
Manages data

access

ORACLE Ingres SYBASE

DBMS driver
SYB

DBMS driver
INS

DBMS driver
ORA

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 1.1.1 How the PolyServer works 1-3

What drives the drivers?

The UNIFACE Runtime Library (URTL) handles the interaction with
DBMS drivers. The URTL is responsible for formatting data before it is
made available to the DBMS drivers for further handling. It is identical
for every UNIFACE application. A single UNIFACE application can
include drivers for several DBMSs, thus allowing the application to
access multiple DBMSs simultaneously.

Remote data access

Figure 1-2 illustrates a UNIFACE application that accesses data on the
client machine as well as on remote DBMSs via a PolyServer on a remote
machine:

Figure 1-2 A UNIFACE application using PolyServer.

UNIFACE application
Implements logical

functionality

PolyServer run time
Manages data

access

INFORMIXDB2ORACLE

DBMS driver
ORA

DBMS driver
DB2

DBMS driver
INF

Server environmentClient environment Network
connection

Network
driver
TCP

UNIFACE run time
Manages data

access

IngresSYBASE

DBMS driver
SYB

DBMS driver
INS

Network
driver
TCP

UNIFACE V7.2

1-4 1.2 Distributed processing versus distributed databases (Mar 1999) PolyServer

The only difference between figure 1-2 and figure 1-1 is that a network
driver has been added to the client application. The network driver is
responsible for handling the network software that provides access to the
remote server machine, for example TCP/IP or Named Pipes.

Network driver

The network driver on the client machine is specified in an assignment
file; an assignment therein directs certain entities onto a path to a
network driver. An assignment can specify that data should be accessed
via a network driver in the same way that an assignment specifies that
the data for a particular entity is accessed via a particular DBMS driver.

For more information about assignments and assignment files, see the
UNIFACE Reference Manual; for information about assignments and
PolyServer, see section 4.1 Assignments with PolyServer.

A UNIFACE application can access data locally via DBMS drivers,
remotely using a remote PolyServer via a network driver, or both. A
PolyServer accesses DBMS data via one or more DBMS drivers and
passes the data to the UNIFACE client. A PolyServer can also access
another PolyServer via a network driver. See section 1.4 Chaining
PolyServers.

A PolyServer is only active when used in combination with a client
UNIFACE application. In fact, a PolyServer is only started by a request
from the client to the PolyServer host. In essence, the PolyServer
depends on the UNIFACE application. This is the main difference
between a UNIFACE application and the PolyServer.

1.2 Distributed processing versus distributed databases
It is important to realize the difference between the terms distributed
processing and distributed databases. They are related, but are very
different. When designing your application and network configuration, it
is important to understand which features PolyServer implements.

The ‘rollback’ and ‘commit’ functions that ensure data integrity in a
distributed database are DBMS functions. UNIFACE can call these
operations, but the DBMS must carry them out. Therefore, distributed
database support really has little to do with UNIFACE or PolyServer.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 1.2.1 Logical referential integrity 1-5

i
Note: The PolyServer implements distributed processing, but does not (by
itself) implement distributed databases.

Distributed processing

The term ‘distributed processing’ describes splitting required processes
between several machines: the client machine executes the user’s
application and a central server performs DBMS operations. This
distribution has been implemented using the PolyServer. UNIFACE
runs on the client machine and handles all interactions with the user and
actual execution of the application. The PolyServer runs on the server
machine and handles all interactions with the DBMS.

Distributed processing allows users to make the best use of the hardware
they have chosen. CPU-intensive operations like editing, screen makeup,
constraints checking, and so on can be performed on a desktop or
departmental machine, while the central database server only needs to
retrieve and store data.

Distributed databases

The term ‘distributed database’ refers to splitting data across several
different machines. It allows users to access and update information from
several different machines which can be geographically dispersed.

1.2.1 Logical referential integrity

UNIFACE ensures data entry is correct before committing a transaction,
thereby safeguarding logical referential integrity in a transaction.

UNIFACE checks the data model. For example, if the COMPANY and
EMPLOYEE entities have a restricted relationship, UNIFACE ensures
that the value in the foreign key of EMPLOYEE (COMP_NUMBER, for
example) refers to an existing occurrence of the entity COMPANY before
allowing the user to store the new values.

UNIFACE V7.2

1-6 1.2.2 Physical referential integrity (Mar 1999) PolyServer

1.2.2 Physical referential integrity

The DBMS ensures that a transaction is either completely committed, or
not at all, thereby protecting the physical referential integrity. The
DBMS checks for physical referential integrity after UNIFACE has
determined that the logical referential integrity of the transaction is
valid.

For information on two-phase commit, refer to the UNIFACE online help.

1.3 Networking processes
When using an application in a distributed environment, several
processes are started on various machines, and the processes exchange a
great deal of information. In most cases, there is a single PolyServer
process on each server machine for each UNIFACE client process.

Multiple PolyServers on one machine

It is possible to have multiple PolyServer processes on a single machine.
However, this is not a trivial task, and greatly depends on the server
operating system and also on the servers’ processing capacity. Avoid
mixing different versions of UNIFACE, as this can easily confuse client
systems and make systems difficult to maintain.

1.3.1 Which processes get started

Table 1-1 illustrates what happens when a typical user interacts with a
distributed application. (The example shows cautious locking. If another
form of locking is used, the stage at which a lock request is sent differs.
Refer to the UNIFACE online help for more information on locking
strategies.)

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 1.3.2 What a PolyServer process does 1-7

1.3.2 What a PolyServer process does

A PolyServer process always contains at least one network driver and
one DBMS driver. The PolyServer process concerns itself only with
network and DBMS I/O. The tasks performed by a PolyServer process
are:

• Logging on to DBMSs and networks (that is, opening paths)
• Generating DBMS and network driver requests

Table 1-1 Interaction between user, UNIFACE, and the PolyServer.

User UNIFACE application PolyServer
1.Starts the

application
• UNIFACE loads itself into memory,

initializes, and activates the first form
2.Goes to the data

entry form
• Activates a data entry form

3.Enters a profile,
then ^RETRIEVE
(with the default
Proc code in the
<Retrieve> trigger)

• Activates the network driver (that is,
path)

• PolyServer process activates
• Logs on to the network

• Sends description of the entity
across the network along with
generic DML open table information

• Logs on to the DBMS

• Sends a Select request • Activates the DBMS driver, which
generates and issues Select command;
returns the first ten hits

• Sends a Fetch request • Gets the data from the DBMS, formats
it, and removes unneeded data

• Formats the data and updates
screen

4.^NEXT_OCC • Sends a Fetch signal • Activates the DBMS command to Fetch
the next record and returns data (TRX)

• Formats the data and updates the
screen

5.Modifies some of
the data

• Sends a Lock request • Activates the DBMS driver to lock the
occurrence

6.^STORE (with the
default Proc code in
the <Store> trigger)

• Sends an Update request across the
network with the modified data

• Activates the DBMS driver to update the
database

• Commits
7.Quits the

application
• Deactivates PolyServer (closes

path)
• Logs off from the DBMS
• PolyServer process ends

• Application ends

UNIFACE V7.2

1-8 1.4 Chaining PolyServers (Mar 1999) PolyServer

• Formatting data into machine-independent UNIFACE transfer
format (TRX) for sending over the network

• Formatting TRX data that has come over the network into the
required DBMS format

• Logging off and closing paths

When the PolyServer is not doing one of the above, it is completely
inactive.

SuperServer process

Some network protocols (for example, Named Pipes under Windows NT)
do not allow a client process to start a process on the server machine. The
SuperServer was developed to provide support for those environments.

A SuperServer process runs constantly on the server machine. A
UNIFACE client requests the SuperServer to start a PolyServer process
when necessary. The SuperServer’s only purpose is to start a PolyServer
process and pass the communication ID (for example, the name or
number of the ‘pipe’) to UNIFACE. After doing this, the SuperServer goes
to an idle state until the next request comes from a UNIFACE client.

1.4 Chaining PolyServers
Chaining PolyServers means accessing one PolyServer from the client
machine and then redirecting the traffic on the server machine to
another PolyServer on another machine. As you can see in figure 1-3, it
is theoretically possible to chain an infinite number of PolyServers
together. The more complicated the configuration, however, the more
difficult it is to maintain.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 1.4 Chaining PolyServers 1-9

Figure 1-3 Chaining multiple PolyServers.

Assignments on each server machine can redirect traffic to another
PolyServer environment. The necessary assignments can be in either
psv.asn or PSYS:psys.asn .

UNIFACE application

Driver interface

Client environment

Server environment
Node A

Server environment
Node B

PolyServer application

Driver interface

PolyServer application

Driver interface

Server environment
Node C

PolyServer application

Driver interface

etc.

DBMS driver

DBMS driverNetwork driver

DBMS driver Network driver

DBMS driver Network driver

Network driver

UNIFACE V7.2

1-10 1.4.1 Why chain PolyServers? (Mar 1999) PolyServer

See section 4.1 Assignments with PolyServer for information about which
assignment files are used with PolyServer; an example of chained
PolyServers with the necessary assignments is shown in section 4.1.7
Chaining PolyServers.

1.4.1 Why chain PolyServers?

Chaining PolyServers is a useful solution in an environment where one
or more of the following conditions is true:

• You want to access a server machine over a network for which you do
not have a driver, but which can be accessed if you do so first via
another machine.

• You want to access a server machine over a network for which
UNIFACE does not support a network driver, but which can be
accessed if you do so first via another machine.

• You want to reach a database which is not available on either the
client or the first server.

1.4.2 Disadvantages of chaining PolyServers

There can be disadvantages to chaining PolyServers. You should
consider issues such as the following, which are discussed individually
below:

• Maintenance
• Error recovery
• Passwords and logon information
• Performance

Maintenance

Chained PolyServers are difficult to maintain. The following factors are
involved:

• User names, passwords, home directories, and so on
• System logon and initialization files
• Assignment files
• The different DBMSs used in the system

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 1.4.2 Disadvantages of chaining PolyServers 1-11

If you are using a PolyServer to simply redirect the network traffic, it is
often easier to establish a direct link between the machines involved,
unless this is impossible due to the combination of network protocols.

You should not chain two PolyServers on the same machine. It is not a
problem to run two separate PolyServers on the same machine—simply
address them separately via an assignment file.

Error recovery

If one part of a network fails, it is not currently possible to determine
which part this is. Thus, it is impossible to recover from this situation. If
the connection is broken, all of the subsequent connections are also
broken.

Passwords and logon information

Logging on to a new machine requires logon and password information,
therefore, starting up a PolyServer process on a new machine requires a
fresh logon. If you have not supplied this information with a
$REMOTE_path assignment, the user must supply it from the client, via
the Log On form. (See section 4.1.4 Using $REMOTE_path for
information.)

When specifying database user names and passwords for a remote server
using a $REMOTE_path assignment or the Log On form, the information
is encrypted before being sent over the network. This is not the case when
using the Proc open statement, the /log command line switch, or an
assignment such as $NET=TCP:node|user|pwd ?. Network passwords
are never encrypted.

It is often inadvisable to let the user know about this kind of path and
logon information.

Performance

Chaining PolyServers can reduce application performance to
unacceptable levels. The combined performance of DBMSs, operating
system, hardware, and network software can slow down an application
considerably. If you are using a PolyServer simply to redirect the
network traffic, it is easier to establish a direct link between the
machines involved.

UNIFACE V7.2

1-12 1.5 Network errors (Mar 1999) PolyServer

1.5 Network errors
This section explains what happens if the UNIFACE-to-PolyServer
connection fails; in other words, communication between UNIFACE and
a PolyServer has been broken for some reason. When this happens, the
PolyServer cannot carry out the task requested by the UNIFACE client,
so a network error occurs.

This section only explains errors that are network errors between a
UNIFACE client application and a PolyServer.

What the designer must know

The designer must understand the following, which are explained in
detail below:

• The principles of error handling between UNIFACE and PolyServer
• The types of network error that can occur
• How PolyServer reacts to network errors
• How UNIFACE reacts to network errors
• Network errors in a multiple PolyServer environment

1.5.1 Principles of error handling

If a network fails for any reason, the only part of the UNIFACE-to-
PolyServer connection that remains is the UNIFACE client application
(except in a multiple PolyServer environment). Everything else is rolled
back, logged off, and shut down. This is the safest possible solution in
almost all circumstances, and is therefore implemented every time.

Data protection

The way in which UNIFACE and PolyServer handle network errors is
designed to protect your existing data, whatever has gone wrong.
Generally speaking, the most critical time for a network error is during
I/O, particularly when writing data to a database and committing.
Similarly, data that is incorrectly retrieved can be disastrous for the
correct functioning of an application.

However, network failures usually upset the environment whatever you
are doing. If a network error occurs when there is no I/O, you cannot be
sure that the following I/O will work as required, even if the network
connection is restored in the meantime.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 1.5.2 Types of error 1-13

Context

UNIFACE maintains control blocks for each opened entity; these control
blocks are sent to the PolyServer that handles that particular entity.
Control blocks keep UNIFACE and PolyServer, or PolyServers, informed
at all times of the current status of each opened entity; that is, they
maintain the context of a running application.

Loss of context after errors

Network errors can have many effects, most of which are not good for
data integrity. For example, a broken connection across a network can
also cause the I/O channel to a DBMS to be broken. In other
circumstances, this might not be the case. The client software can never
know this, however, because the network no longer works.

You can never assume that your context has been preserved, even if the
network only goes down for a few seconds and comes back up again.

1.5.2 Types of error

UNIFACE understands, and can act upon, the error categories shown in
table 1-2. This table also shows the value returned to the UNIFACE
application by the Proc statement that caused the error:

These errors are explained in this section. They can be tested for in Proc
code, as explained in section 1.5.3 Testing for network errors in Proc code.

Table 1-2 Network errors.

Network error $status

Unknown -16

Pipe broken -17

Failed to start new server -18

Fatal -19

UNIFACE V7.2

1-14 1.5.2 Types of error (Mar 1999) PolyServer

Unknown

An ‘unknown’ error results from an incorrect (that is, unrecognized)
network driver request. This can only happen when the network driver
has not been correctly coded. As such, it is only likely to occur with
user-defined drivers in the development stage.

Figure 1-4 Network error: Unknown.

When an unknown network error occurs, the UNIFACE application sets
$status and continues without interruption. In other words, UNIFACE
returns control of the client application to the user and does not shut
down the PolyServer or PolyServers.

Pipe broken

A ‘pipe’ carries the channels, or connections, over the network. A ‘broken
pipe’ is therefore a network connection that has failed somewhere. This
can occur between UNIFACE and a PolyServer or between two
PolyServers, anywhere in the network.

When a broken pipe network error occurs, UNIFACE sets $status and
returns control of the client application to the user. The PolyServer or
PolyServers are shut down by UNIFACE. For more information about
network reconnection after detection of a lost network connection, see
section 1.5.5 UNIFACE reaction to network errors.

Figure 1-5 Network error: Pipe broken.

Network
driver?

$status is -16

Network
driver

$status is -17

✂

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 1.5.2 Types of error 1-15

Failed to start new server

This type of network error occurs when UNIFACE or a PolyServer tries
to start a new server and fails,. This can occur for any reason, for
example, as a result of an incorrectly defined logon or an unplugged
cable.

Figure 1-6 Network error: Failed to start new server.

When a ‘failed to start new server’ network error occurs, UNIFACE sets
$status and returns control of the client application to the user.

Fatal

A fatal network error is the end of your connection with the PolyServer.
This is the same as a broken pipe error, as far as UNIFACE is concerned.

Figure 1-7 Network error: Fatal.

When a fatal network error occurs, UNIFACE sets $status and returns
control of the client application to the user.

Network
driver

$status is -18

Is there anybody out there?

Network
driver

$status is -19

UNIFACE V7.2

1-16 1.5.3 Testing for network errors in Proc code (Mar 1999) PolyServer

1.5.3 Testing for network errors in Proc code

Because UNIFACE sets $status to a particular value for each type of
network error (shown in table 1-2), you can use these values in the Proc
code in I/O triggers to test for network errors.

For example, if one entity is held in a DBMS on a remote machine, you
should test in the Read trigger of that entity to see if the network is
working properly when you retrieve it:
; trigger: Read
read
if ($status = -18)

message "Can’t connect to remote host. Contact system manager."
endif
if ($status = -17)

message "Network connection broken. Contact system manager."
endif

1.5.4 PolyServer reaction to network errors

In a normally working network environment, PolyServer listens
constantly to an open channel for requests from the UNIFACE
application or other PolyServers in the network. When a network error
occurs, PolyServer recognizes this and shuts itself down, after first
rolling back any uncommitted database transactions and logging off all
open DBMSs.

PolyServer issues a message before shutting down in the following
situations:

• When logon information is not complete while running in batch mode
• When PolyServer attempts to return to UNIFACE but cannot because

the UNIFACE process has stopped for some reason

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 1.5.5 UNIFACE reaction to network errors 1-17

1.5.5 UNIFACE reaction to network errors

Consider the following scenario: the client UNIFACE application is
communicating over a network with a PolyServer on another machine,
and the DBMS being used is on the server. The user of the client
UNIFACE application enters some data. While the user is not doing
anything, the network goes down. The user then stores the data.

What happens?

When the user stores, any I/O requests to the tables that require
updating generate a ‘pipe broken’ error, and $status is set to -17.
UNIFACE marks all control blocks that need the network channel in
error to access the data. All subsequent I/O requests within the current
transaction that need the network channel check to see if the control
block is marked. If it has been marked, UNIFACE generates a fatal error
and sets $status to -19.

Meanwhile, PolyServer recognizes that the network has gone down, rolls
back all uncommitted DBMS transactions, logs off from the DBMS, and
shuts itself down. The rolled back transaction can now be restarted. If the
next transaction encountered has an I/O request, UNIFACE checks to
see if the control block is marked. If it has been marked, it attempts to
connect to a new PolyServer.

When UNIFACE succeeds in accessing the data via the network channel,
it resets the mark for all control blocks.

UNIFACE V7.2

1-18 1.5.6 Chained PolyServers and network errors (Mar 1999) PolyServer

1.5.6 Chained PolyServers and network errors

As explained in section 1.5.4 PolyServer reaction to network errors, the
PolyServer rolls back, logs off from the DBMSs, and shuts itself down
when it recognizes that the network connection has failed. This has a
domino effect for each of the following PolyServers in the chain. Each
PolyServer, in turn, recognizes that the connection with the previous one
has been broken, and rolls back, logs off from the DBMSs, and shuts itself
down. This is the only way of preserving the context of the UNIFACE
application.

In figure 1-8, PolyServer 1 sends the error to the UNIFACE client. The
other PolyServers shut themselves down as they realize the network has
failed:

Figure 1-8 How PolyServers react to a chained network error.

Client
PolyServer 1

PolyServer 4

PolyServer 3

PolyServer 2

PolyServers 2, 3, and 4 shut
themselves down if network

between 1 and 2 fails

Network
driver

✂

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 1.6 Further information 1-19

1.6 Further information
The following sections provide useful reference information for anyone
who wants to know more about the internal workings of the PolyServer.

1.6.1 PolyServer communication

UNIFACE communicates with PolyServer at the Session layer of the
Open Systems Interconnection (OSI) reference model. This model is
shown in figure 1-9:

Figure 1-9 UNIFACE and PolyServer in the OSI seven-layer model.

Figure 1-9 shows that UNIFACE and PolyServer incorporate the top
three levels of the OSI model. The network drivers in both UNIFACE and
PolyServer each communicate with the Transport layer. UNIFACE does
not concern itself with the lower layers; it is the responsibility of the
networking software to provide the facilities defined below the Transport
layer.

Client Server

UNIFACE PolyServer Presentation
Session

Application

Transport

Physical

Network
Data link

Presentation
Session

Application

Transport

Physical

Network
Data link

UNIFACE V7.2

1-20 1.6.2 Network driver communication (Mar 1999) PolyServer

Constant communication and understanding

The two parts of the architecture, UNIFACE and PolyServer,
communicate at a high and sophisticated level of understanding, each
side always knowing what the other one needs and what it is doing. The
interaction between these two modules is a sign of advanced intelligence
and increased capacity.

This mode of operation is in contrast to many conventional client/server
architectures, where the server answers a request, then forgets that
request and prepares for the next one. In this situation, any subsequent
requests have to be rebuilt from the beginning.

Reduced I/O

With the UNIFACE-to-PolyServer network implementation, the network
carries primary information instead of lengthy command strings. Once
the initial record of requirements for an application has been sent over
the line, the requirements become resident on the PolyServer and can be
used repeatedly. There is no need to send the full information again.

For example, if your path to a particular entity is via the PolyServer,
UNIFACE sends a description of the entity to PolyServer the first time
UNIFACE needs to open the entity.

Subsequent I/O activity on items in that entity requires only a very small
packet of data to show which action is required on which item. This
drastically reduces I/O communication time and network load overhead,
therefore, the performance compares very favorably to other similar
systems.

1.6.2 Network driver communication

A network driver comprises a set of routines that allow a UNIFACE
client to communicate with a PolyServer, and the other way around.
Each network protocol requires a separate driver. Network drivers on the
client and server side are generally identical.

UNIFACE uses network drivers the same way it uses DBMS drivers in a
stand-alone configuration. UNIFACE or the PolyServer activates a
specific function in the network driver when it needs a service from the
other process. The information needed to perform the service is available
in a data structure accessible by the driver.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 1.6.2 Network driver communication 1-21

Data transport

A network driver is responsible only for implementing the
communication between the two processes (UNIFACE and PolyServer or
PolyServer and PolyServer). It is a messenger that knows nothing about
the packages it transports. The network driver uses the networking
facilities to do the actual data transport. Each package consists of DBMS
driver function requests and responses to these requests.

The functions recognized by a network driver are described in table 1-3:

Send and Receive are the most commonly used function requests. They
transport all the normal DBMS function requests and responses between
the UNIFACE process and the PolyServer process. The other functions
set up and maintain the network connections.

Contents of network package

A network package contains the same information that is passed to a
DBMS driver (that is, DBMS driver function requests and data), but in
machine-independent TRX (UNIFACE transfer) format. All the standard
DBMS driver requests go over the network via the network drivers.

These DBMS driver function requests are described in the UNIFACE
online help, and are summarized in table 1-4:

Table 1-3 Network driver functions.

Network driver
function requests

Explanation

Connect Establish a connection with the other process. (The
connect routine is different between the client and
server side.)

Disconnect Drop the connection and log off.

Send Send a package across the network. The size of
each package sent is limited to 8192 bytes.

Receive Receive a package from the other process.
Message Interpret and format an error message received

from the other process.
Information Get information about the characteristics of the

network.

UNIFACE V7.2

1-22 1.6.2 Network driver communication (Mar 1999) PolyServer

Table 1-4 DBMS driver function requests.

DBMS driver
function requests

Explanation

Logon path control:

Logon Log on to DBMS.

Logoff Log off from DBMS.

Table control:

Open Open or create a database table or file.

Name Construct the name of the overflow table or file.

Close Close a database table or file.

Data manipulation:

Select Select occurrences matching a profile.

Fetch Fetch one occurrence (from hitlist).

Write Insert new occurrence into database.

Update Update existing occurrence in database.

Delete Delete existing occurrence from database.

Wildcard Delete a set of occurrences or set their foreign key
fields to NULL.

Transaction control:

Commit Commit transactions on path.

Rollback Roll back transactions on path.

Miscellaneous:

Info Provide DBMS and driver characteristics or supply
logon information.

Message Translate an error code.

Sql Submit a DML statement to the DBMS.

UNIFACE V7.2

Chapter

UNIFACE Configuration Guide (Mar 1999) 2-1

2 UNIFACE Application Servers
Read this chapter if you intend to partition the execution of your
applications across remote servers. If you are running a UNIFACE
application that only executes locally, you can skip this chapter.

This chapter describes the UNIFACE Application Servers in detail, and
describes the following topics:

• Introduction to Application Servers
• Synchronous and asynchronous communications
• The Component Server
• Chaining Application Servers
• Error handling

The procedure to configure the Application Servers is described in
Microsoft Windows Installation Guide and UNIX and MPE/iX
Installation Guide. It is recommended that you also read Introduction to
UNIFACE if you have not already done so.

UNIFACE V7.2

2-2 2.1 Introduction (Mar 1999) UNIFACE Application Servers

2.1 Introduction
The PolyServer, described in chapter 1 PolyServer, supports access to
data on remote (server) systems. This effectively partitions your
applications, with the application being executed on the local system, and
data being retrieved on a server system.

The UNIFACE Application Server architecture extends this approach to
allow you to partition the execution of your applications so that, not only
can data be accessed remotely but, your applications can be executed in
a distributed environment. The components of your application having
no user interface (that is, services and reports) can execute on a remote
server, rather than on the local system.

2.2 Synchronous and asynchronous communication
The Application Server architecture supports two modes of
communication: synchronous and asynchronous. The PolyServer is an
example of a synchronous server. The Application Server is an example
of a server that can be executed synchronously or asynchronously. There
are a number of important differences between these two modes of
communication:

• Synchronous communication relies on a direct connection between
the client and server systems. In asynchronous communication, a
connection exists between the client and the Message Daemon for
only as long as it takes to transfer the request to the Message
Daemon. Once the request has been received by the Message
Daemon, a local channel is opened to the Application Server and the
request message is transferred.

• A synchronous server only services one client. An asynchronous
server, on the other hand, can service requests from more than one
client. The requested Asynchronous Server is uniquely identified by
its host name, user name, and requested Server type.

• With asynchronous communication, the client does not have to wait
for the request to be processed before continuing.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 2.3 The Message Daemon 2-3

Limitations

Asychronous communication support is limited by the following
constraints:

• Only components (services and reports) can be executed.
• It is not possible for the client system to receive a reply or return

status code back from the Application Server. The only status code
that is returned to the client system indicates whether the remote
asynchronous request was successfully posted, not whether the
requested server received the request, nor any indication about the
completion status of the request.

• The asynchronous Application Server request relies on a permanently
running server process, the Message Daemon, on the server system.
This must be running when a request to an asynchronous Application
Server is made. Normally, it is the Message Daemon that starts the
requested Application Server.

2.3 The Message Daemon
The asychronous Application Server architecture relies on a
permanently running process, the Message Daemon, on the remote
system. The Message Daemon receives requests from any number of
clients for functionality that is available on the remote system. Each
client specifies the type of server required and the user account under
which it is to run.

All requests on a particular host specifying the same server type and user
are directed to the same Application Server. The Message Daemon
administers the Application Servers running on its system.

Normally, an Application Server is started by the Message Daemon in
response to a request for that server. However, it is also possible to start
an Application Server manually, for diagnostic purposes. The Message
Daemon handles communication to and from the client and the
Application Server using Inter-Process Communication (IPC) channels.

UNIFACE V7.2

2-4 2.4 The UNIFACE Monitor and Name Server (Mar 1999) UNIFACE Application Servers

2.4 The UNIFACE Monitor and Name Server
Two other applications are provided for use with Application
Servers—the UNIFACE Monitor and the Name Server:

• The Monitor is a UNIFACE client that requests information on the
servers that are running from the Message Daemon. The Monitor can
also be used to stop a particular server, or to stop the Message
Daemon itself. For more information on the use of the Monitor, refer
to appendix A UNIFACE Server Monitor.

• The Name Server allows for central definitions of paths and entities
through the use of a centralized assignment file. The Name Server
relieves the need to have the same information repeated in each client
system’s assignment file. Any number of clients can use the Name
Server to obtain information from a single assignment file.

2.5 The Application Server
The Application Server allows Proc statements to be executed in a
distributed environment. It can be used synchronously or
asynchronously. The Application Server executes the UNIFACE
components on server systems. When an assignment on the client side
directs an asychronous service or report to a remote server, the request
is directed to the Message Daemon running on the server node.

2.6 The Component Server
The non-UNIFACE Component Server, or Component Server, extends
the application partitioning of the Application Server by allowing the
remote execution of 3GL services or Operating System (OS) services on
remote servers. The Component Server operates in the same way as the
Application Server except that 3GL code, and not Proc code, is executed
remotely.

As with the Application Server, you can start the Component Server
manually for diagnostic purposes. The Message Daemon handles
communication to and from the client and the Component Server using
Inter-Process Communication (IPC) channels.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 2.7 Chaining Application and Component Servers 2-5

2.7 Chaining Application and Component Servers
In the same way that PolyServers can be chained together, synchronous
Application Servers can be linked together. (Asynchronous Application
Servers cannot be chained together.)

Chaining Application Servers is useful where you want to use OS service
functionality that is not available on either the client or the first server.
It is recommended, however, that you avoid complicated chained
configurations because the configuration becomes more difficult to
maintain. For a more detailed discussion of chaining, refer to section 1.4
Chaining PolyServers.

2.8 Running and verifying the servers
This section provides an example procedure for running and verifying the
servers. The procedure consists of the following steps:

1. Verify that the Message Daemon is running.
2. Start the Application Server manually.
3. Run pdmon.
4. Stop the Application Server using pdmon.

2.8.1 Verify that the Message Daemon is running

To use the asynchronous path, the Message Daemon (umd) must be
running before any other action is taken. When the Message Daemon is
running, you can test whether it is functioning properly by running the
Monitor (pdmon) on the same node. When you run the Monitor, it uses
defaults to get information from the Message Daemon. With no
Application Server running, the display looks like this:
csh% pdmon
Monitor started, command:
Display information

UST Username Remote Address State
----- ---------- ------------------- -------------------

Monitor finished
csh%

UNIFACE V7.2

2-6 2.8.2 Start the Application Server manually (Mar 1999) UNIFACE Application Servers

This shows that the Message Daemon is running and accepting
connections from its network address. The client, in this case the
Monitor, has communicated successfully with the network address, and
the Message Daemon has replied. If there are problems, the monitor
stops temporarily and then displays an error message.

2.8.2 Start the Application Server manually

The Application Server can be started automatically or manually. In a
production environment, the Application Server is usually started
automatically to provide more flexibility. For diagnostic purposes, you
can start the Application Server manually. This method enables you to
verify network and local interprocess communication.

i
Note: When you start the Application Server manually, you must supply
the full command line. Under Windows NT, the command line must also
include the protocol and synchronicity.

If there is a problem during start-up, the Application Server exits and
returns an error. Otherwise, the server creates an IPC channel, registers
itself with the Message Daemon, finds its .aps file, and executes its
application execute trigger. The Application Server then waits for input
from the Message Daemon.

2.8.3 Run pdmon

If you now run pdmon, the Application Server should be displayed in the
‘Display information’ listing. Its state should be ‘operational’. This
verifies that the Application Server and Message Daemon can
communicate over the network.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 2.8.4 Stop the Application Server using pdmon 2-7

2.8.4 Stop the Application Server using pdmon

To stop an Application Server, you must identify it uniquely. Therefore,
you must include /usr and /ust qualifiers in the pdmon command:
pdmon /cmd=shut /usr=user /ust=ust

This command sends a message to the Message Daemon. The Message
Daemon then forwards the message through the IPC channel to the
Application Server. If the Application Server then stops, you have
verified that all servers can communicate.

UNIFACE V7.2

2-8 2.8.4 Stop the Application Server using pdmon (Mar 1999) UNIFACE Application Servers

UNIFACE V7.2

Chapter

UNIFACE Configuration Guide (Mar 1999) 3-1

3 Client and peer-to-peer
messaging
This chapter describes the configuration necessary for client and
peer-to-peer messaging. It is recommended that you also read the Proc
Language Reference Manual for information on the postmessage and
other related Proc statements.

3.1 Introduction
With the postmessage Proc statement, a component instance can post
an asynchronous message to either:

• A client component instance – This is described in section 3.2 Message
handling for client instances.

• An instance activated by an independent (or peer) UNIFACE
application – This is described in section 3.3 Message handling for
peer instances.

The syntax for the postmessage Proc statement is as follows:

postmessage Destination, MessageId, MessageData

where Destination has the syntax {InstPath: }InstName

For more information on the use of the postmessage statement, see the
Proc Language Reference Manual.

UNIFACE V7.2

3-2 3.2 Message handling for client instances (Mar 1999) Client and peer-to-peer messaging

3.2 Message handling for client instances
When no InstPath is specified, the destination is assumed to be a client
instance. That is, an instance started by a new_instance statement
invoked by the sender. Depending on the InstanceName specified, the
message can be routed to the following destinations, as shown in
table 3-1:

3.3 Message handling for peer instances
When InstPath is specified, the destination is assumed to be an instance
of an independent UNIFACE application. InstPath can specify either a
logical path name or a physical path name of the application. These are
described in the following sections.

Logical path name

In this format, InstPath points to a network path defined in the
assignment file. For example:
postmessage "$MY_PATH:INST1","MSGID001","My Message"

where $MY_PATHis defined in the assignment file as:
TCP:myhost|paulc||UA2

This example assumes that a destination client application is running on
the host myhost , under the user account paulc , and has registered itself
to the Message Daemon (also running on the myhost system) with the
application identification UA2.

Table 3-1 Message destinations for different instances

Condition Message destination

InstanceName specifies an instance
created by the client application

Instance’s Asynchronous Interrupt
trigger

InstanceName specifies an empty
string

Sender instance’s Asynchronous
Interrupt trigger

InstanceName specifies an unknown
instance

Local application’s Asynchronous
Interrupt trigger

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 3.3 Message handling for peer instances 3-3

Physical path name

In this format, InstPath specifies a physical network path. For example:
postmessage "TCP:myhost|paulc||ASV:INST1","MSGID001","My Message"

For both logical and physical path names, no password information is
required.

Requirements

To enable peer-to-peer messaging, you must ensure the following:

• The Message Daemon is running on the host systems where the
destination Application Servers or UNIFACE applications are
running.

• The UNIFACE application that wants to receive external
asynchronous messages is started with the USTcommand line switch.
For example:
UNIFACE.EXE MYAPP UST=UA1 DNP=TCP:

The command line switches must be specified without a preceding
slash (/) character. This registers the application with the local
Message Daemon. For Application Servers, the USTcommand line
switch is optional because the default server identification is ‘ASV’.
However, for client applications, the USTcommand line switch must
be specified.

• The client that posts messages must have a valid network path
available to itself; that is, it must have registered itself with its local
Message Daemon. You can use the $instancepath Proc function to
determine how the client has been registered to its Message Daemon.
For more information on Proc functions, see the Proc Language
Reference Manual.

Broadcasting

Message broadcasting is not currently supported. If you want to send a
message to a selection of clients, it is recommended that you use a
subscription mechanism. Using this architecture, each interested client
subscribes to a message, while the message poster application maintains
a list of the clients, and posts the message to every client.

UNIFACE V7.2

3-4 3.3 Message handling for peer instances (Mar 1999) Client and peer-to-peer messaging

UNIFACE V7.2

Chapter

UNIFACE Configuration Guide (Mar 1999) 4-1

4 Assignments for a distributed
environment
Chapter 10 Assignment files in the UNIFACE Reference Manual
describes the general use of assignment file, including situations in
which all data and non-DBMS files are held on the client system.

This chapter describes:

• Using the PolyServer to access data and non-DBMS files on the server
• Using the Application Servers to manage the execution of application

components on the server
• Using TP monitors and third-party middleware to increase

transaction processing capabilities

4.1 Assignments with PolyServer
When working with the PolyServer, UNIFACE uses your assignments to
determine which network driver to use and how to log on to the server.
(See chapter 1 PolyServer for more information on the PolyServer.)
Assignments on the client system can direct both DBMS entities and
non-DBMS files to another node in the network.

An assignment on the client system causes UNIFACE to direct entities
to the PolyServer on another node by creating a path to a network driver
instead of to a DBMS driver. Assignments on the server are used to direct
the entities to a DBMS driver.

UNIFACE V7.2

4-2 4.1 Assignments with PolyServer (Mar 1999) Assignments for a distributed environment

In the example shown in figure 4-1, an assignment on the client for the
application directs all entities on the path $DEF to the node VAX2 via
TCP: (the TCP/IP driver). On node VAX2, assignments direct the entity
VISITS onto the path $RDB, the entity CORRESP onto the path $SYB,
and the remaining entities onto the path $RMS.

Figure 4-1 Example of assignments for the PolyServer.

RMS ORACLE

Network driver
TCP

DBMS driver
RMS

DBMS driver
ORA

Application assignments include:
[PATHS]

$DEF = TCP:VAX2|?|?

Driver interface

PolyServer assignments include:
[ENTITIES]

VISITS.RBASE = $RDB:VISITS.*

CORRESP.RBASE = $SYB:CORRES.*

.RBASE = $RMS:.*

Rdb SYBASE RMS

Driver interface

DBMS driver
RDB

DBMS driver
SYB

DBMS driver
RMS

Node VAX2

Client environment

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.1.1 Assignment files for the client environment 4-3

4.1.1 Assignment files for the client environment

Section 10.2 Which assignments are used? in the UNIFACE Reference
Manual describes the use of local and global assignment files for
UNIFACE applications. Directing entities or non-DBMS files to a
network path is done in exactly the same way. These objects are assigned
when running a stand-alone application. The only difference is that the
path ultimately leads to a network driver instead of to a DBMS driver;
the syntax is identical.

The assignment file used by the UNIFACE application in the client
environment usually does the following to direct an entity onto a network
driver:

1. Creates a user-defined path that accesses the network driver.
2. Directs one or more entities to this path.

Create a path that accesses the network driver

A user-defined path-to-driver assignment optionally includes the node
name, user name, and password information. If a question mark (?) is
included at the end of this information, the Log On form for the network
appears, asking the user for the required information.

Assign one or more entities to this path

After the path has been defined, assign the entities that are located on
the server to the new path.

Example

The following assignment file contains assignments for the data used in
the standard demo application delivered with UNIFACE:
; CLIENT.ASN
[PATHS]
$VAX3 TCP:VAX3|?|?
$VAX2 TCP:VAX2|?|?

[ENTITIES]
VISITS.RBASE $VAX3:VISITS.*
.RBASE $VAX2:.*

UNIFACE V7.2

4-4 4.1.2 Assignment files for the PolyServer environment (Mar 1999) Assignments for a distributed environment

The two assignments in the [PATHS] section create paths named $VAX2
and $VAX3. Both of these paths are accessed with the TCP/IP network
driver. The assignments for these paths include only the node name. The
question marks (?) appearing in the position of the user name and
password mean that the user will be asked for this information when
needed.

The first assignment in the [ENTITIES] section directs the VISITS entity
from the application model RBASE to the $VAX3 path. The next
assignment directs all other entities in this application model to the
$VAX2 path. Assignments on the VAX2 and VAX3 servers determine
where the tables or files for the entities are found.

When the user retrieves data, the Log On form appears, requesting user
name and logon information needed to access node VAX2. After logging
on to VAX2, the Log On form appears again to request the user name and
logon for VAX3.

The assignment file described above can be used on any client platform
where the TCP/IP driver is available; the syntax does not change. The
syntax is also the same when using another network driver, for example
Named Pipes (NMP). The only difference is that NMP: substitutes for
TCP:.

4.1.2 Assignment files for the PolyServer environment

Assignment files for PolyServer maintain a similar structure. Again, two
assignment files are used: a local assignment file that contains
assignments for the current PolyServer session, and a global assignment
file that contains assignments for all PolyServer sessions.

The two sets of assignments are combined to make the internal
assignment file for the PolyServer session. The internal assignment file
for a PolyServer session is assembled in the same way as the internal
assignment file for a UNIFACE application; this is described in
section 10.2 Which assignments are used? of the UNIFACE Reference
Manual.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.1.2 Assignment files for the PolyServer environment 4-5

Figure 4-2 demonstrates the locating of assignments for the PolyServer:

Figure 4-2 Locating assignments for the PolyServer.

Global assignment file

The global assignment file is named PSYS:psys.asn and is found in the
PolyServer installation directory, PSYS.

Local assignment file

The local file used is the first file found that is:

• Defined with the /asn switch when PolyServer is started. This can be
specified in the logon script in the logon directory of the server. See
the Installation Guide for your platform for a description of how this
is done.

• Named psv.asn in the user’s logon directory.

Priority and scope of assignments

Bear in mind that this system gives you two assignment environments.
If an assignment on the UNIFACE side directs entities to a network
driver, an assignment on the PolyServer is responsible for directing these
entities to a DBMS.

Generally, the assignment files on the client determine which network
driver and system logon information should be used. The assignment
files on the server contain DBMS assignments and logon information.

Internal
assignment
file

Local
assignment
file

Global
assignment
file

PSYS:psys.as n

UNIFACE V7.2

4-6 4.1.3 Relationships between assignment files (Mar 1999) Assignments for a distributed environment

Separate hierarchies for the assignment files allow you to provide the
definitions you need in the appropriate place. For example, you probably
do not want end users to know DBMS passwords on the server, as this
might allow unauthorized entry. Include these in an assignment on the
server.

4.1.3 Relationships between assignment files

The assignments for client and server remain strictly separated from
each other: the PolyServer’s assignments take effect only when the
PolyServer is activated by data reaching the server from the client. For
example, an assignment on the server machine might reassign a $path
that has come from the client to another $path, and no assignment on the
client side can override this.

Figure 4-3 shows how the various assignment files work together:

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.1.3 Relationships between assignment files 4-7

Figure 4-3 Combining assignment files with PolyServer.

Network driver
TCP

Assignments for USER1:
[PATHS]
$NET = TCP:VAX2|USER1|?
$DEF = $NET
$SYB = $NET

Driver interface

Rdb SYBASE RMS

Assignments for USER2:
From psv.asn in home directory

[PATHS]
$DEF=$RMS

From PSYS:psys.asn
[PATHS]
$SYB=SYB:WORK_DB|ALL|ALL

Driver interface

Network driver
TCP

USER2USER1 Assignments for USER2:
[PATHS]
$NET = TCP:VAX2|USER2|?
$DEF = $NET
$SYB = $NET

Driver interface

TCP/IP

DBMS driver
RDB

DBMS driver
SYB

DBMS driver
RMS

DBMS driver
SYB

Node VAX2

Assignments for USER1:
From psv.asn in home directory

[PATHS]
$DEF=$RDB

From PSYS:psys.asn
[PATHS]
$SYB=SYB:WORK_DB|ALL|ALL

Driver interface

UNIFACE V7.2

4-8 4.1.3 Relationships between assignment files (Mar 1999) Assignments for a distributed environment

In figure 4-3, two client machines are shown accessing a single server
machine, VAX2. USER1’s first assignment defines a path called $NET,
which leads to the TCP: network driver (TCP/IP) and logs on to the node
VAX2 as USER1. The next assignment directs all entities on the paths
$DEF and $SYB onto the new path. USER2’s assignments also direct all
entities on the paths $DEF and $SYB to the TCP: network driver, but
logs on to the node VAX2 as USER2.

On the server, each user’s home directory contains a local assignment file
psv.asn . In addition, there is a global assignment file (psys.asn) in
the PolyServer installation directory (PSYS).

For USER1, psv.asn in the server environment directs all entities on
the path $DEF onto $RDB, which leads to the DBMS driver for Rdb. The
assignment in the global assignment file directs all entities on the path
$SYB to the DBMS driver for SYBASE.

For USER2, the local assignment directs all entities on the path $DEF
onto the path $RMS, which leads to the DBMS driver for RMS. The global
assignment directs all entities on the path $SYB to the DBMS driver for
SYBASE, using the same database as USER1.

When each client first accesses an entity on the path $NET, because of
the question mark (?) in the driver logon assignment, the Network
Log On form is displayed to allow entry of that user’s network password.

Scope of assignment file definitions

Definitions in an assignment file are generally valid for the current
machine only; this means that the assignments have a local scope. The
assignments in any individual assignment file provide definitions for the
UNIFACE or PolyServer process on the local machine only.

When you direct a path, or an individual entity, to a network driver, the
assignment means that the data is located ‘over there’ on the network.
The assignment file on the server then takes over and defines the exact
location of the data, including file locations, passwords, and so on.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.1.4 Using $REMOTE_path 4-9

4.1.4 Using $REMOTE_path

When a PolyServer process needs to log on to a DBMS or another
machine, and does not already know the logon information, it sends a
request to the client. The client first looks in its internal assignment file
for an assignment setting beginning with $REMOTE_and ending with the
requested path name.

If this assignment is found, the logon information provided on the
assignment is used to log on to the requested DBMS or network driver.

If this assignment is not found, the client displays a Log On form so that
the user can provide the required logon information for the DBMS or
network. The server becomes the ‘master’ until the information is
provided. Note: this is one of very few situations in which the PolyServer
asks the UNIFACE client for information.

The $REMOTE_path assignment should appear like this:

$REMOTE_path {=} driver: {name}| user| password

The driver parameter is the three-letter mnemonic for the driver. While
it is not used by either UNIFACE or the PolyServer, it must be present
to indicate where the database or node name begins. The logon
information provided in $REMOTE_path must be complete; you cannot use
question marks (?) to request a Log On form.

i
Note: The $REMOTE_path assignment should appear in the assignment
file section [PATHS].

When the PolyServer sends a request for logon information, the path and
driver names are included in the request. The path name used is the first
path name defined for the entity. Even if that path has been assigned to
another, the first path is sent to the client in the request for logon
information.

UNIFACE V7.2

4-10 4.1.4 Using $REMOTE_path (Mar 1999) Assignments for a distributed environment

Using $REMOTE_path with a default path

The example in figure 4-4 shows the assignment file client1.asn on
the client, and psv.asn in the logon directory of the server. This figure
illustrates a simple case where the default path $DEF is redirected to a
server via the TCP driver.

When the client application first references an entity on the path $DEF,
it finds an assignment in client1.asn that directs all entities on the
path $DEF to the network driver TCP:. A Network Log On form appears
so that the user can log on to a TCP/IP node.

Figure 4-4 Example using $REMOTE_ path to provide logon information for default path.

On the server side, the assignment in psv.asn directs the entity on the
path $DEF to the ORACLE driver. Since this path-to-driver assignment
contains question marks (?), as opposed to actual logon information, the
PolyServer asks the client for this information for the path $DEF. The
client machine looks first for information from a $REMOTE_DEF
assignment. On finding this, it returns the information to the server,
which then logs on to ORACLE as user ‘work’ with password ‘todo’.

Assignment file client1.asn on client:
[PATHS]
$DEF = TCP:?|?|?
$REMOTE_DEF = ORA:|work|todo

Assignment file psv.asn on a TCP server:
[PATHS]
$DEF = ORA:|?|?

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.1.4 Using $REMOTE_path 4-11

Using $REMOTE_path with a user-defined path

In the example in figure 4-5, the assignment files are client2.asn on
the client, and psv.asn in the logon directory of the server, VAX2. When
the client application first references an entity that matches the wildcard
assignment *.DICT (for example, UCSCH.DICT), assignments in
client2.asn direct that entity onto the user-defined path $VAX2,
which leads to the TCP/IP node VAX2. Logon information is provided in
the path-to-driver assignment.

Figure 4-5 Example using $REMOTE_ path with a user-defined path.

On the server, an assignment in psv.asn , directs *.DICT entities to the
user-defined path $APDICT. As the definition for $APDICT uses
question marks for the user name and password, PolyServer sends a
request for the $APDICT logon information back to the client machine.

The client locates the required information in the $REMOTE_APDICT
assignment and returns it to PolyServer. The server then logs on to
ORACLE as user ‘bickers’ with password ‘island’.

An entity that matches the *.DEMO assignment on the client is also
directed to the TCP/IP node VAX2 via the user-defined path $VAX2. On
the server, these entities are assigned to the user-defined path
$ORADEM. This path logs on to ORACLE as user ‘scott’ with password
‘tiger’.

Assignment file client2.asn on client:
[ENTITIES]
.DEMO = $VAX2:.*
.DICT = $VAX2:.*
[PATHS]
$VAX2 = TCP:vax2|myname|mypass
$REMOTE_APDICT = ORA:|bickers|island

Assignment file psv.asn on server VAX2:
[PATHS]
$ORADEM = ORA:|scott|tiger
$APDICT = ORA:|?|?
[ENTITIES]
.DICT = $APDICT:.*
.DEMO = $ORADEM:.*

UNIFACE V7.2

4-12 4.1.4 Using $REMOTE_path (Mar 1999) Assignments for a distributed environment

Using $REMOTE_path with path-to-path assignments

The example in figure 4-6 shows the assignment files client3.asn on
the client, and psv.asn in the logon directory of the server. When the
client application first references an entity on the path $DEF, it finds an
assignment in client3.asn that directs all entities on the path $DEF
to the network driver TCP:. A Network Log On form appears so that the
user can log on to a TCP node.

Figure 4-6 Example using $REMOTE_ path with a path-to-path assignment.

On the server side, an assignment in psv.asn directs the entity on the
path $DEF to a user-defined path, $XYZ. The path $XYZ is then directed
to the ORACLE driver. Since this path-to-driver assignment contains
questions marks, PolyServer asks the client for the logon information for
the first path on which the entity was found, that is, $DEF. This means
that the client looks for logon information in a $REMOTE_DEFsetting. If
this is not found, the DBMS Log On form appears for ORACLE.

Incorrect use of $REMOTE_path

You must provide complete logon information with the $REMOTE_path
assignment. Using a question mark (?) to request a Log On form is not
supported. The following example from an assignment file on the client
is incorrect because it makes PolyServer try to log on using a question
mark (?) as the user’s password:
[PATHS]
$VAX2 = TCP:vax2|myname|mypass
$REMOTE_APDICT = ORA:|bickers|?
[ENTITIES]
.DEMO = $VAX2:.*
.DICT = $VAX2:.*

Assignment file client3.asn on client:
[PATHS]
$DEF = TCP:?|?|?
$REMOTE_DEF = ORA:|work|todo

Assignment file psv.asn on a TCP server:
[PATHS]
$XYZ = ORA:|?|?
$DEF = $XYZ

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.1.5 Assigning non-DBMS files on the network 4-13

4.1.5 Assigning non-DBMS files on the network

In a PolyServer environment, it is often useful to keep non-DBMS files
on the server rather than on the client. These must be directed to the
network using assignments on the client side. Assignments on the server
side determine the ultimate location of the non-DBMS files.

For example, the following assignment file causes the UNIFACE
application to find its forms on the VAX2 machine:
[PATHS]
$VAX2 = TCP:VAX2|myname|mypass

[ENTITIES]
.DEMO = $VAX2:.*
.DICT = $VAX2:.*

[FILES]
USYS:*.FRM = $VAX2:USYS:*.frm
.FRM = $VAX2:.frm

If the path specified in a non-DBMS file assignment does not lead to a
network driver, it is ignored.

i
Note: A file selection box is not able to show files on a remote machine.

4.1.6 Opening a network path using Proc code

When you explicitly open a path with the Proc open statement,
UNIFACE assumes that you want to open a DBMS. If that path is
directed to a network driver, the logon information is passed to the server
for use there. If you want to provide logon information for the network
driver, you must use the /net switch, both in the open statement and in
the assignments for that path.

Consider the following assignments on the client:
[PATHS]
$SALES/NET $TCP
$FINANCE/NET $TCP
$UD1 $SALES/NET
$UD2 $SALES/NET
$UD3 $FINANCE/NET

UNIFACE V7.2

4-14 4.1.6 Opening a network path using Proc code (Mar 1999) Assignments for a distributed environment

This assignment file is used by an application in which the <Detail>
trigger of a command button contains the following code:
open "SALESNODE|%%$$thisuser|%%$$pwd_on_net1", "$SALES/NET"
open "FINANCENODE|%%$$thisuser|%%$$pwd_on_net2", $FINANCE/NET"
open "|%%$$thisuser|%%$$pwd_on_dbms1", "$UD1"
open "|%%$$thisuser|%%$$pwd_on_dbms2", "$UD2"
open "|%%$$thisuser|%%$$pwd_on_dbms3", "$UD3"

When the first open statement is executed, UNIFACE passes the logon
information for SALESNODE to the path $SALES/NET. The information
is then passed to the network driver TCP:.

The next open statement passes the logon information for
FINANCENODE to the TCP: driver along the path $FINANCE/NET.
The /net switch in the open statement and the assignment statements
ensures that UNIFACE recognizes that the logon information is meant
for the network driver.

The next group of open statements passes logon information to the
DBMS drivers on paths $UD1, $UD2, and $UD3. Since the /net switch
is not present, UNIFACE assumes that this information is meant for a
DBMS driver. It is passed through the network driver to the DBMS
driver on the server side.

The following example is in relation to the Proc statement open :
open "node+12000|username|password|SYNC", "SYNC/net"
open "node+13013|username|password|ASYNC", "$ASYNC/net"

i
Note: It is not possible to specify a UNIFACE server type (such as the
Application Server) at the end of an open statement.

For more information on the open statement, see the Proc Language
Reference Manual.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.1.7 Chaining PolyServers 4-15

4.1.7 Chaining PolyServers

Chaining PolyServers means accessing one PolyServer from the client
machine, then redirecting the traffic on the server to another PolyServer
on another machine. Assignments on each server can redirect traffic to
another PolyServer environment. The necessary assignments may be in
either psv.asn or PSYS:psys.asn .

When you are redirecting a path, your assignment is very simple. For
example, the following assignment in psv.asn on the server machine
redirects all I/O that uses the $ORA path to the TCP/IP network driver:
$ORA = TCP:NODE3|NODEUSER|NODEPASS

In this way, all data intended for ORACLE is redirected to the TCP/IP
driver, which accesses a PolyServer on another machine.

Example with chained PolyServers

Consider an example where you want to run the standard demo
application (with application model RBASE) in a distributed
environment.

In dBase III+, the entities CORRESP and VISITS are located on your
local machine. The remaining entities can be accessed following $DEF to
$VAX and $VAX to node VAX1. On that node, all the entities, except
INVOICE, are located in RMS. The entity INVOICE is found on the node
SUN, in ORACLE. The assignments that might be used to define this
situation are shown in figure 4-7:

UNIFACE V7.2

4-16 4.1.7 Chaining PolyServers (Mar 1999) Assignments for a distributed environment

Figure 4-7 Example of chaining PolyServers.

Assignments include:
[PATHS]
$VAX = TCP:VAX1|?|?
$DEF = $VAX
;$DB3 = DB3 :
[ENTITIES]
CORRESP.RBASE = $DB3:CORRESP.*
VISITS.RBASE = $DB3:VISITS.*

Driver interface

Assignments include:
[PATHS]
$SUN = TCP:SUN|?|?
$DEF = $RMS
[ENTITIES]
INVOICE.RBASE = $SUN:INVOICE.*

Driver interface

Assignments include:
[PATHS]
$ORA = ORA:|scott|tiger

Driver interface

DBMS driver
RMS

Network driver
TCP

DBMS driver
DB3

Network driver
TCP

Client
environment

Server environment
Node VAX1

Server environment
PolyServer on node SUN

DBMS driver
ORA

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.2 Assignments for a distributed environment 4-17

4.2 Assignments for a distributed environment
In the simplest situation, a UNIFACE application shell and its
components (forms, services, and reports) are all executed on the client.
In addition, all DBMS tables and files, and all non-DBMS files (for
example, the compiled component files, .frm , .svc , and .rpt), are
located on the client. If any of these are found anywhere except the
default locations, an assignment file can be used to direct them to
another location; see section 10.4 When no assignment file is used in the
UNIFACE Reference Manual.

Figure 4-8 shows a UNIFACE application on the client:

Figure 4-8 A UNIFACE application on the client.

In a more typical situation, however, the DBMS tables and files and,
perhaps, the non-DBMS files are available on a server rather than on the
client. An assignment file is required to direct these to the proper
location. (The required assignments are described in section 4.1
Assignments with PolyServer.) In this case, the execution still occurs on
the local machine.

Client environment

UNIFACE application

DBMS

*.frm
*.svc
*.rpt

FRM1

FRM2

FRM...

FRMn

Forms

SVC1

SVC2

SVC...

SVCn

Services

RPT1

RPT2

RPT...

RPTn

Reports

UNIFACE V7.2

4-18 4.2 Assignments for a distributed environment (Mar 1999) Assignments for a distributed environment

Figure 4-9 shows an example of a UNIFACE application using
PolyServer to access data and files on a server:

Figure 4-9 A UNIFACE application using PolyServer to access data and files on a server.

Remote environment:
SERVER1

Client environment

ORACLE
*.frm
*.svc
*.rpt

[PATHS]
$ORA=ORA:|?|?

[ENTITIES]
.MODEL1=$ORA:.*
.MODEL2=$ORA:.*

[FILES]
.frm=/compiled/.frm
.svc=/compiled/.svc
* .rpt=/compiled/*.rp t

Assignments

[PATHS]
$NET1=TCP:SERVER1|?|?
$REMOTE_ORA=ORA:|scott|tiger

[ENTITIES]
.model1=$NET1:.*
.model2=$NET1:.*

[FILES]
USYS:*.frm=USYS:*.frm
.frm=$NET1:.frm
.svc=$NET1:.svc
.rpt=$NET1:.rpt

Assignments
FRM1

FRM2

FRM...

FRMn

Forms

SVC1

SVC2

SVC...

SVCn

Services

RPT1

RPT2

RPT...

RPTn

Reports

UNIFACE application

PolyServer application

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.2 Assignments for a distributed environment 4-19

Partitioning your application

Since UNIFACE Seven, you have the option of ‘partitioning’ the
execution of your application, allowing it to run in a distributed
environment. This means that the components of your application (that
is, services and reports) that have no user interface can execute on a
remote server, rather than on the local machine.

The client application shell and all the forms that handle user interaction
run on the local machine; assignments on the local machine direct service
and report components to remote machines for execution. On each
remote server, a UNIFACE Application Server manages the
(synchronous) services and reports running there. See figure 4-10.

i
Note: Service and report components that are to be executed on remote
machines must be started using the Proc instruction new_instance (or
activate , which does an implicit new_instance). See the Proc
Language Reference Manual for further information on these
instructions.

UNIFACE V7.2

4-20 4.2 Assignments for a distributed environment (Mar 1999) Assignments for a distributed environment

Figure 4-10 UNIFACE application on the client and services and reports on servers.

The UNIFACE application and all its forms are executing on the client.
When a form running in the application starts a service or report, that
component will run on SERVER2.

Client environment

Remote environment: SERVER1

ORACLE

PolyServer application

FRM1

FRM2

FRM...

FRMn

Forms

UNIFACE application

*.frm
*.svc
*.rpt

Remote environment: SERVER2

Application Server

SVC1

SVC2

SVC...

SVCn

Services

RPT1

RPT2

RPT...

RPTn

Reports

PolyServer application

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.2 Assignments for a distributed environment 4-21

Figure 4-11 shows assignments that might be used to define this
partitioned environment:

Figure 4-11 Example assignments in a distributed environment.

On the client, assignments in the sections [SERVICES_EXEC] and
[REPORTS_EXEC] direct the service and reports components to the
network path $NET2; these components will be executed on the server
defined by the path-to-driver assignment for $NET2. This path opens a
TCP connection to SERVER2, and uses the ‘ASV’ symbol to start an
Application Server on that node. (See section 4.2 Assignments for a
distributed environment.)

The path-to-driver assignment for $NET1 leads to a PolyServer process
that manages access to data and non-DBMS files. When the path is first
opened, the PolyServer process is started on the remote node, SERVER1.
In the same way, the first time that a service or report on path $NET2 is
referenced, an Application Server process is started on the remote node
SERVER2. This process then manages all remote components that
execute on this node.

On the server side, assignments in the [ENTITIES] and [FILES] sections
direct entities and non-DBMS files to SERVER1. See section 4.2.2
Assignments on the Application Server side.

Assignments on the client:
[PATHS]
$NET1=TCP:SERVER1|?|?
$NET2=TCP:SERVER2|?|?|ASV
$REMOTE_ORA=ORA:|scott|tiger

[ENTITIES]
.model1=$NET1:.*
.model2=$NET1:.*

[FILES]
f*.frm=$NET1:f*.frm

[SERVICES_EXEC]
SVC*=$NET2:SVC*

[REPORTS_EXEC]
RPT*=$NET2:RPT*

Assignments on SERVER2:
[PATHS]
$NET3=TCP:SERVER1|kaye|birdbrain
$REMOTE_ORA=ORA:|scott|tiger

[ENTITIES]
.model1=$NET3:.*
.model2=$NET3:.*

[FILES]
.svc=$NET3:.svc
.rpt=$NET3:.rpt

Assignments on SERVER1:
See figure 4-9

UNIFACE V7.2

4-22 4.2 Assignments for a distributed environment (Mar 1999) Assignments for a distributed environment

Asynchronous communication

When an assignment on the client side directs an asynchronous service
or report to a remote server, the request is directed to the UNIFACE
Message Daemon running on the server node. The Message Daemon
manages asynchronous communication between the network driver and
the UNIFACE Application Servers for all client UNIFACE applications
using that server.

Each client application starts a UNIFACE Application Server process on
the server where it starts a synchronous service or report. The UNIFACE
Message Daemon, however, manages the asynchronous services and
reports for all client applications accessing that server. The Message
Daemon starts an additional Application Server for each network user
who activates an asynchronous service or report, and for each symbol
that is used to define the path.

For example, if two clients, USER1 and USER2, are starting
synchronous and asynchronous services and reports on node SERV1, and
both log on to the network as user ‘general’ with symbol ASV, different
Application Servers are created on SERV1:

• For the synchronous services and reports of USER1
• For the synchronous services and reports of USER2
• For the asynchronous services and reports of network user ‘general’

using the symbol ASV

This situation is illustrated in figure 4-12:

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.2 Assignments for a distributed environment 4-23

Figure 4-12 A server environment with a Message Daemon.

[PATHS]
$SRU=TCP:SERV1|general|orders
|ASV

[SERVICES_EXEC]
=$SRU:
[REPORTS_EXEC]
=$SRU:

Assignments

Client
USER1

UNIFACE
application

Remote environment SERV1

Application
Server
USER1’s
synchronous
remote
components

Application
Server
general’s
asynchronous
remote
components

Application
Server
USER2’s
synchronous
remote
components

[PATHS]
$SRU=TCP:SERV1|general|orders
|ASV

[SERVICES_EXEC]
=$SRU:
[REPORTS_EXEC]
=$SRU:

Assignments

Message
Daemon

Client
USER2

UNIFACE
application

UNIFACE V7.2

4-24 4.2 Assignments for a distributed environment (Mar 1999) Assignments for a distributed environment

If clients USER1 and USER2 use different user names to log on to the
network (for example, USER1 logs on as user ‘general’, and USER2 logs
on as ‘major’), the Message Daemon creates separate Application Servers
to handle their asynchronous components. See figure 4-13:

Figure 4-13 The Message Daemon creates separate Application Servers for different users.

[PATHS]
$SRU=TCP:SERV1|general|orders
|ASV

[SERVICES_EXEC]
=$SRU:
[REPORTS_EXEC]
=$SRU:

Assignments

Client
USER1

UNIFACE
application

Remote environment SERV1

Application
Server
USER1’s
synchronous
remote
components

Application
Server
general’s
asynchronous
remote
components

Application
Server
USER2’s
synchronous
remote
components

[PATHS]
$SRU=TCP:SERV1|major|effort|A
SV

[SERVICES_EXEC]
=$SRU:
[REPORTS_EXEC]
=$SRU:

Assignments

Message
Daemon

Client
USER2

UNIFACE
application

Application
Server
major’s
asynchronous
remote
components

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.2.1 Assignments on the client side 4-25

i
Note: The Monitor allows you to monitor and control the status of the
UNIFACE Message Daemons and asynchronous Application Servers that
are active in your network. See appendix A UNIFACE Server Monitor for
more information.

Message frame

All information that is directed to the message frame of a synchronous
Application Server automatically appears in the client’s message frame.

All information that is directed to the message frame of an asynchronous
Application Server is lost, unless the assignment setting
$PUTMESS_LOGFILEis used to direct it to a file.

For more information, refer to the UNIFACE Reference Manual.

4.2.1 Assignments on the client side

The assignment file used by the UNIFACE application on the client
usually does the following to direct a service or report component to an
Application Server on a remote server:

• Creates a path to a network driver using user-defined paths.
• Directs one or more services or reports to this path.

i
Note: See chapter 4 Command line switches in the UNIFACE Reference
Manual for information on using the command line subswitch /asv used
with /app or /lin to create an Application Server. See the UNIFACE
online help for details on the requirements for an Application Server on
the platforms where it can be used.

Path to network driver

A path to a network driver can be created with a path-to-driver
assignment (see section 10.8 Path-to-driver assignments in the
UNIFACE Reference Manual) or with user-defined paths (see
section 10.10 User-defined paths in the UNIFACE Reference Manual). In
either case, the final ‘step’ in the path to the driver is a path-to-driver
assignment.

UNIFACE V7.2

4-26 4.2.1 Assignments on the client side (Mar 1999) Assignments for a distributed environment

In general, path-to-driver assignments appear in the section [PATHS]
and are used to provide logon information for DBMS and network drivers
that require this information. For creating a partitioned application
environment, the syntax for this assignment has been extended with an
extra argument that indicates the type of server to be found on the path:

$path {=} driver: {name}| {username}| {password}{| server_type}

Where:

• driver, name, username, and password arguments are described in
section 10.8 Path-to-driver assignments in the UNIFACE Reference
Manual.

• server_type is one of the following:

• PSV, indicating that $path leads to a PolyServer. If server_type is
omitted, this is the default.

• UNS, indicating that $path leads to a UNIFACE Name Server.
(See section 4.3 Using the UNIFACE Name Server for information
on the UNIFACE Name Server.)

• A symbol defined on node name; typically, this is ASV. This symbol
defines the command necessary to start the Application Server on
node name.
For example, if name is a UNIX platform, an environment
variable should be defined in user’s .profile :
$ASV = /home/bin/asv /asn=asv.asn ust=asv tcp:

See your platform’s Installation Guide for more information on the
requirements for starting an Application Server in your
environment.

[SERVICES_EXEC] and [REPORTS_EXEC]

These sections contain two-part assignments that you can use to
determine the node on which your services and reports execute.

Each assignment in these sections is of the following form:
component1 {=} {$path:} component2

You can use wildcards for assigning components. These are used in the
same way as wildcards in non-DBMS file assignments; see section 10.6.1
Wildcards in non-DBMS file assignments in the UNIFACE Reference
Manual.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.2.1 Assignments on the client side 4-27

$path should be a path that is defined in the [PATHS] section of your
assignment file; this path should lead to the remote node that will
execute the requested service:

• If the path leads to an Application Server, the service or report
executes on that node.

• If the path leads to a UNIFACE Name Server, the assignment file
there directs the services and reports to the node where they will be
run. (See section 4.3 Using the UNIFACE Name Server for further
information.)

• $SRU is the default path, if the path is not specified.

$SRU is a default path, created at installation, that can be used to direct
UNIFACE service and report components to a remote server for
execution. (See section 10.3 Assignments after installation in the
UNIFACE Reference Manual for information on the default paths
created at installation.)

By default, all remote components are directed to this path. If no
assignment can be found for a service or report (for example, if there is
no [SERVICES_EXEC] or [REPORTS_EXEC] section or if the remote
component does not match any of the assignments there), UNIFACE
looks for an assignment for the path $SRU. If there is no assignment that
directs $SRU to an Application Server or a UNIFACE Name Server, the
component executes locally.

For example, in the simplest case, where all services and reports are
directed to a single server, the [SERVICES_EXEC] and
[REPORTS_EXEC] sections are not required; however, the [PATHS]
section must include an assignment for $SRU:
[PATHS]
$SRU = TCP:phoenix|kaye|birdbrain|asv

The [SERVICES_EXEC] and [REPORTS_EXEC] sections can also be
used to direct services and reports to different Application Servers:
[PATHS]
$SRU1 = TCP:phoenix|kaye|birdbrain|asv
$SRU2 = TCP:roc|kaye|birdbrain|asv

[SERVICES_EXEC]
svc_* = $SRU1:*
* = $SRU2:*

[REPORTS_EXEC]
rpt_* = $SRU1:*
* = $SRU2:*

UNIFACE V7.2

4-28 4.2.2 Assignments on the Application Server side (Mar 1999) Assignments for a distributed environment

Default paths for OS and 3GL services

The Component Server contains a subset of the Application Server’s
functionality but can only execute 3GL services. The $SOS and $S3C
default paths direct OS services and 3GL services, respectively, to a
Component or Application Server for execution.

As with the $SRU default path, if no assignment can be found for an OS
or 3GL service, UNIFACE looks for an assignment for the paths $SOS or
$S3C. If there is no assignment that directs $SOS or $S3C to an
Application or Component Server, the component executes locally.

4.2.2 Assignments on the Application Server side

Assignment files for a UNIFACE Application Server maintain a similar
structure to a normal UNIFACE application; that is, two assignment
files are used, a local assignment file and a global assignment file.

The two sets of assignments are combined to make the internal
assignment file for the Application Server session. The internal
assignment file for a Application Server session is assembled in the same
way as the internal assignment file for a UNIFACE application;
section 10.2 Which assignments are used? in the UNIFACE Reference
Manual describes this procedure.

Figure 4-14 Locating assignments for the Application Server process.

Internal
assignment
file

Local
assignment
file

Global
assignment
file

USYS:usys.asn

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.3 Using the UNIFACE Name Server 4-29

Global assignments

The global assignment file, USYS:usys.asn is located on the server
where the Application Server is running. This is the same file used by
any UNIFACE application running on that machine. (See section 10.2
Which assignments are used? in the UNIFACE Reference Manual.)

Local assignments

The local assignment file used is the first file found that is:

• Defined with the /asn switch when the Application Server is started.
• Named appl .asn in the user’s logon directory, where appl is the

name of the compiled Application Server executable, created using
the /asv subswitch when the application was compiled.

Priority and scope

The Application Server is a separate UNIFACE application process, so
you have two assignment environments. If an assignment on the client
side directs a component to a network driver, assignments on the
Application Server side are responsible for directing the entities and files
that the component requires to the proper location. When the same
entities and files are used by the client application, this can mean that
assignments are duplicated on the client and the server.

4.3 Using the UNIFACE Name Server
When many clients are running distributed applications in a networked
environment, the situation can be very dynamic, making it difficult to
manage. The UNIFACE Name Server allows you to simplify the
management of this environment by centralizing the assignments
required to locate the execution of remote components (services and
reports).

The UNIFACE Name Server is a daemon that runs on one of the nodes
in your network. When it receives a request from a client to locate the
execution of a service or report component, it returns the required node
name and allows the client to proceed with the process of logging on to
that node, if required.

UNIFACE V7.2

4-30 4.3 Using the UNIFACE Name Server (Mar 1999) Assignments for a distributed environment

Figure 4-15 illustrates using the UNIFACE Name Server:

Figure 4-15 The UNIFACE Name Server instructs clients as to where their services and reports should be executed.

Client
USER1

UNIFACE
application

Remote environment
‘roc’

Application
Server
USER1

Client
USER3

UNIFACE
application

Application
Server
USER2

Remote environment
‘phoenix’

Application
Server
USER3

Client
USER2

UNIFACE
application

UNIFACE
Name
Server

SV
C1?

ro
c

RPT2?

roc

RPT12

phoenix

SVC1

RPT2

SVC3

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.3 Using the UNIFACE Name Server 4-31

To make use of the UNIFACE Name Server, assignments on each client
direct the execution of remote components to a path that leads to the
Name Server. Usually this is done using the default path $SRU. The
[SERVICES_EXEC] and [REPORTS_EXEC] sections are needed only if
components need to be renamed locally, or if some components will be
located without use of the Name Server (perhaps, to execute locally).

The Name Server determines where the execution of services and reports
should occur. Assignments in the [SERVICES_EXEC] and
[REPORTS_EXEC] sections direct the remote components to paths.
Assignments in the [PATHS] section direct these paths to the
appropriate host server. The server name is then returned to the client.
An assignment on the client is responsible for logging on to the remote
server to execute.

i
Note: Compuware provides a monitor program, pdmon, that allows you to
monitor and control the status of the UNIFACE Name Server in your
network. See appendix A UNIFACE Server Monitor for more information.

Example: Executing all remote components on servers

Consider the example shown in figure 4-16:

Figure 4-16 Assignments on the UNIFACE Name Server direct the remote component to a server.

Client: new_instance "RPT12"

Assignments on the client:
[PATHS]

$SRU=TCP:SERVER|||UNS

$NET1=TCP:phoenix|?|?

$NET2=TCP:roc|?|?|ASV

Assignments on SERVER:
[PATHS]

$HOSTA=@$NET1|ASV

$HOSTB=@$NET2

[SERVICES_EXEC]
=$HOSTB:

[REPORTS_EXEC]
RPT1*=$HOSTA:RPT1*A
RPT99=$HOSTA:RPT99
=$HOSTB:

Run RPT12
where?

RPT12 is on $HOSTA,
known as RPT12A

Use an
Application

Server on $NET1
to start RPT12A

UNIFACE V7.2

4-32 4.3 Using the UNIFACE Name Server (Mar 1999) Assignments for a distributed environment

The client application asks to create a new instance of report RPT12.
There is no [REPORTS_EXEC] section in the client assignments, so the
report follows the path $SRU. This path leads to a UNIFACE Name
Server on node SERVER.

The Name Server on node SERVER then uses its assignments to locate
where the remote component will be executed. In the [REPORTS_EXEC]
section, RPT12 matches the first assignment; it is renamed to RPT12A
and directed to path $HOSTA.

An assignment in the [PATHS] section on the Name Server directs
$HOSTA to an Application Server (the server type ‘ASV’) on path $NET1;
the at sign (@) instructs it to return to the client to open the selected path.
(Note that the server type can be specified by the Name Server’s
assignments or by the client’s assignments. If specified in both places, the
client’s assignment takes precedence.)

In the client assignments, a path-to-driver assignment opens the path
$NET1 to node PHOENIX using the TCP network driver (if the path is
not already open). Assignments at node PHOENIX must locate the
compiled report file, RPT12A.rpt , as well as DBMS tables and
non-DBMS files needed by the report.

Example: Executing a remote component on the client

Consider the example shown in figure 4-17:

Figure 4-17 Using the UNIFACE Name Server to direct a remote component to the client.

Client: new_instance "RPT99"

Assignments on the client:
[PATHS]

$SRU=TCP:SERVER|||UNS

$LOCAL=SRU:

$NET1=TCP:phoenix|?|?

$NET2=TCP:roc|?|?|ASV

Assignments on SERVER:
[PATHS]

$HOSTA=@$NET1|ASV

$HOSTB=@$NET2

$HOSTC=@$LOCAL

[SERVICES_EXEC]

=$HOSTA:

[REPORTS_EXEC]

RPT1*=$HOSTA:RPT1*A

RPT99=$HOSTC:RPT99

=$HOSTB:

Run RPT99
where?

RPT99 is on $HOSTC,
known as RPT99

Use
$LOCAL to start

RPT99

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.3 Using the UNIFACE Name Server 4-33

The client application asks to create a new instance of report RPT99.
There is no [REPORTS_EXEC] section in the client assignments, so the
report follows the path $SRU. This path leads to a UNIFACE Name
Server on node SERVER.

The Name Server on node SERVER uses its assignments to locate where
the remote component will be executed. In the [REPORTS_EXEC]
section, RPT99 matches the second assignment; the report is directed to
path $HOSTC.

An assignment in the [PATHS] section on the Name Server directs
$HOSTC to path $LOCAL; again, the at sign (@) tells it to return to the
client to open that path. The path $LOCAL must be defined in the client’s
assignments.

In the client assignments, a path-to-driver assignment assigns the path
$LOCAL to the driver SRU:, this ‘driver’ is the client application. This
means that RPT99 will be executed locally by the client application.

Beware of loops!

When you are using the Name Server to locate the execution of remote
components, assignments on the client direct a component to the Name
Server. The Name Server, in turn, returns a path name to the client to
complete the assignment. ‘Looping’ occurs when the client sends a
component to the Name Server to get a path name; the Name Server
returns a path name, and the client directs this path name back to the
Name Server. In this case, the Proc instruction new_instance (or
activate) returns an error.

You should avoid this from occurring when building assignment files for
the client and Name Server.

UNIFACE V7.2

4-34 4.3.1 Assignments on the client side (Mar 1999) Assignments for a distributed environment

4.3.1 Assignments on the client side

To direct a service or report component through the UNIFACE Name
Server, the assignment file used by the UNIFACE application on the
client side usually does the following:

• Creates a path to the Name Server (via a network driver) using
user-defined paths (or the default path $SRU).

• Directs service and report components to a user-defined path that
leads to the UNIFACE Name Server. If any remote components are
not assigned, the path $SRU is used to locate where they will execute.

• Defines path-to-driver assignments for all possible paths that can be
returned by the Name Server.

Path to UNIFACE Name Server

A path to a network driver can be created with a path-to-driver
assignment (see section 10.8 Path-to-driver assignments of the
UNIFACE Reference Manual) or with user-defined paths (see
section 10.10 User-defined paths in the UNIFACE Reference Manual). In
either case, the final ‘step’ in the path to the Name Server is a
path-to-driver assignment, as described in section 4.2.1 Assignments on
the client side. In this case, UNSis required for the server_type:

$path {=} driver: {name}|||UNS

[SERVICES_EXEC] and [REPORTS_EXEC]

The assignment file sections [SERVICES_EXEC] and
[REPORTS_EXEC] are used to determine where service and report
components execute. The contents of these sections are described in
section 4.2.1 Assignments on the client side.

By default, the path leading to the node where all service and report
components are executed is $SRU. If all remote components are to be
located by the UNIFACE Name Server, the [SERVICES_EXEC] and
[REPORTS_EXEC] sections are not needed on the client side; all services
and reports can simply follow the path $SRU to the Name Server. In this
case, a path-to-driver assignment (in the [PATHS] section) should direct
$SRU via a network driver to the Name Server.

If some service and report components are to be executed locally, these
components should be directed either through assignments on the client
side, or from the Name Server to a path that is assigned to the SRU:
driver. This ‘driver’ is actually the client application, where local services
and reports will run.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.3.2 Assignments on the Name Server side 4-35

Paths to all possible nodes

The [PATHS] section of each client assignment file should include
path-to-driver definitions (as described in section 4.2.1 Assignments on
the client side) for each path that can be located by the Name Server.

If the server type is not provided by the Name Server assignment, it
should be provided in the client assignment. If specified in both places,
the client’s assignment takes precedence. If no server type is specified, it
defaults to PSV, for PolyServer.

4.3.2 Assignments on the Name Server side

Assignments on the UNIFACE Name Server do the following to locate
the execution of remote service and report components:

• Return the path name and server type to the client using special
path-to-server assignments (optionally, in the section [PATHS])

• Direct the remote service and report components to the proper host
using the assignment file sections [SERVICES_EXEC] and
[REPORTS_EXEC]

Path-to-server assignments

A path-to-server assignment is used to return to the client the path name
and server type where the service or report, that is currently being
assigned, should be executed. An assignment that points to a network
driver and logs on (if the path is not already open) must exist on the
client.

The syntax for a path-to-server assignment is:

$path {=} @$client_path{| server_type}

Where:

• $path is a path that appears in the assignment file sections
[SERVICES_EXEC] or [REPORTS_EXEC].

• $client_path is a path that is defined in the client assignments.
• server_type is usually a symbol defined on the node reached by the

path $client_path. (This symbol is described in section 4.2.1
Assignments on the client side.) The server_type argument determines
the type of the UNIFACE server that will execute the service or report
currently being assigned.

UNIFACE V7.2

4-36 4.3.2 Assignments on the Name Server side (Mar 1999) Assignments for a distributed environment

If the server_type argument is omitted, UNIFACE expects to
determine the type of server from the $client_path assignment. If the
server type is also omitted on the client, PSV(PolyServer) is assumed;
this is not an appropriate UNIFACE server for a service or report.
If the server_type argument is defined both on the Name Server and
on the client, the client’s assignment is used. However, it is
recommended that you include the server_type argument on the
Name Server side, since the main use of the Name Server is to
centralize the assignments needed to locate the execution of remote
components.

For path-to-driver assignments, you can also define alternative fallback
paths to reach data on remote machines. For information on fallback
paths, see the UNIFACE Reference Manual.

[SERVICES_EXEC] and [REPORTS_EXEC]

The assignment file sections [SERVICES_EXEC] and
[REPORTS_EXEC] are used to determine where service and report
components execute. The contents of these sections are described in
section 4.2.1 Assignments on the client side.

On the Name Server, if the $path part of component assignment is
omitted, only the name of the component being located is returned to the
client; the client assignments are then used to determine where the
component will be executed. This means that the client assignment file
must use the sections [SERVICES_EXEC] and [REPORTS_EXEC] to
direct these components to a path that leads to an Application Server. If
you choose to use this technique, make sure that the component is not
directed back to the Name Server, resulting in an assignment loop
between the client and the Name Server.

Which assignments are used?

The UNIFACE Name Server uses only a local assignment file. It uses the
first of these files which can be defined with the /asn switch when the
Name Server daemon was started, or the file uns.asn in the start-up
directory of the Name Server daemon.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.3.3 Middleware support 4-37

4.3.3 Middleware support

UNIFACE supports the execution of components over foreign
middleware and currently supports the following middleware drivers:

• TUX (TUXEDO)
• ENC (ENCINA)
• OVS (CORBA)
• COM
• CIC (CICS)
• IMD (IMS/DC functions)

The driver mnemonics listed here are used in the assignment files. For
example, you can assign the $SRU path to $TUX. This changes the path
of services to a TUX driver. UNIFACE also allows you to add your own
middleware driver (MW1).

4.3.4 Transaction Processing

UNIFACE supports Transaction Processing (TP) management through
the use of TP monitors. UNIFACE supports Encina and TUXEDO TX/XA
transaction management. These monitors keep track of the transactions
that occur between clients and servers. The clients and servers may be
distributed over a wide area. For more information on the Transaction
Processing support provided by the Universal Request Broker
Architecture, see the URB Interfaces Manual.

Transaction Management

The details of the TP monitor are declared in the Transaction
Management [TM] section of the assignment file. This section specifies:

• MANAGER– The name of the transaction manager used.
• PATHS – The database (servers only) and ‘activate’ paths (which have

transaction attributes).
• TIMEOUT – The session time-out, in seconds, for the transaction. The

default value is 0 (no time-out).
• TXRETURNPHASE– A user must enter numeric value 1 or 2. Entering

a value of 1 means that the client will not wait for the second phase
of the commit to end. Entering a value of 2 means that the client will
wait for the end of the commit. The default is 2.

UNIFACE V7.2

4-38 4.3.4 Transaction Processing (Mar 1999) Assignments for a distributed environment

• LOGON{DB path} – This keyword registers the TP monitor to the
database. For example, LOGON$ORA=.. Logon information should
only be supplied for Encina

At a minimum, the [TM] section must specify a MANAGER and a PATH.
If the client assignment file has a [TM] section, the server assignment file
also needs to have a [TM] section. Transactional clients cannot use the
server if it does not have a [TM] section.

For more information on the individual middleware, see the URB
Interfaces Manual.

The following examples show the corresponding assignments needed in
both the client assignment file and the server assignment file.

For a client assignment file:
[PATHS]
$MW = TUX:server+13000
;$MW = ENC:||
[SERVICES_EXEC]
; these servic es are located on server (and transactio nal)
CURRENT MW:CURRENT
LOAN $MW:LOAN
SAVINGS MW:SAVINGS
[TM]
MANAGER = TUX
;MANAGER = ENC
PATHS = $MW
TIMEOUT= 10

For a server assignment file for TUXEDO:

Table 4-1 Supported paths for middleware

Path Example

$TUX $TUX TUX:node+port|user|password|application_password|client

$ENC $ENC ENC:[ENCINA cell name]|user|password

$OVS $OVS OVS:[IPAddress][+port|+][+poolname|+user|+password]

$CIC CIC:SYMDEST|user|password|[|TPNAME]

$IMD IMD:host[+port]|VID|PWP|Adaptor[+arguments]

$COM COM:server|user|password

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 4.3.4 Transaction Processing 4-39

[PATHS]
; User name and password are not needed
$DATA = INF:dbms||
[ENTITIES]
.BANKING DATA:.*
[SERVICES_EXEC]
; All services are located here (and transactional)
* $SRU:*
[TM]
MANAGER = TUX
PATHS = $DATA, $SRU

TXRETURNPHASE=1

For a server assignment file for Encina:
[PATHS]
; No username and password needed here (only the DATABASE name)
$TMDATA ORA:||

[ENTITIES]
.MODEL $TMDATA:.*

[TM]
MANAGER = ENC
PATHS = $TMDATA
; For ORACLE + ENCINA
LOGON$TMDATA = Oracle_XA+Acc=P/scott/tiger+SesTm=0

; For INFORMIX + ENCINA
;LOGON$TMDATA = db

UNIFACE V7.2

4-40 4.3.4 Transaction Processing (Mar 1999) Assignments for a distributed environment

UNIFACE V7.2

Chapter

UNIFACE Configuration Guide (Mar 1999) 5-1

5 EcoTOOLS configuration
This chapter provides information on how to configure your UNIFACE
servers and Web applications to work with EcoTOOLS.

5.1 Introduction
EcoTOOLS provides extensive performance and event management
capabilities for your network applications.

A System Management Server (SMS) process on each remote node
gathers information on the UNIFACE processes running on its node. As
information is collected by the SMS process, it is forwarded, via a TCP/IP
connection, to an EcoTOOLS agent on the same remote node. Depending
on how it is configured, the EcoTOOLS agent may contact the SMS once,
and leave the connection open, or it may connect and disconnect at preset
intervals.

Each EcoTOOLS agent forwards its data to the EcoTOOLS Management
Station. The Management Station uses the information received from its
agents to detect problems, and to initiate corrective actions to ensure
system performance and continuous availability.

The following UNIFACE products can be monitored using EcoTOOLS:

• PolyServer
• Application Server
• Message Daemon
• Name Server
• Web applications

For more information on EcoTOOLS, see your EcoTOOLS
documentation.

UNIFACE V7.2

5-2 5.2 Using EcoTOOLS monitoring (Mar 1999) EcoTOOLS configuration

5.2 Using EcoTOOLS monitoring
This section describes how to start and stop the SMS process, as well as
the assignment setting used to configure EcoTOOLS monitoring support.

Installing EcoTOOLS monitoring support

The executables used to start and stop the SMS process are
automatically installed when you install UNIFACE. The executables are
located in the \bin (or /bin for UNIX) directory of the UNIFACE
installation directory.

For information on installing EcoTOOLS, see your EcoTOOLS
installation documentation.

Starting the SMS process

In the Microsoft Windows NT environment, use the following command
to start the SMS process:

{start} smservr {SMS_SRV_PORT= PortNo} {LOGNAME=LogName}
{OPENEXTEND|OPENCLEAR}

In a UNIX environment, use the following command to start the SMS
process:

smservr {SMS_SRV_PORT=PortNo} {LOGNAME=LogName}
{OPENEXTEND|OPENCLEAR} {&}

Where:

• The optional start command runs the SMS process in the
background. If this command is not specified, the SMS process runs
in the foreground. This command is only available for Microsoft
Windows NT. (For UNIX, the optional shell (&) command runs the
SMS process in the background.)
If the SMS process is not run in the background, you must stop the
SMS process (with the smshut command) in another window.

• PortNo specifies the port number to be used; default is port 15015.
• LogName specifies the name and (optionally) the path of the log file

created by the SMS process. If no log file is specified, the file
SMSERV.LOGis created in the current directory.

• OPENCLEAR specifies that the existing log file should be
overwritten, and OPENEXTEND specifies that the new information
should be appended to the existing log file. The default is
OPENCLEAR.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) 5.2 Using EcoTOOLS monitoring 5-3

Stopping the SMS process

For both the Microsoft Windows NT and UNIX environments, use the
following command to stop the SMS process:

smshut {SMS_SRV_PORT=PortNo}

Where:

• PortNo specfies the port to be used; default is port 15015.

Assignment settings

The following assignment settings control the behavior of the SMS
process, and must be included in the assignment file of the UNIFACE
product being monitored:

• $SMS_REQUIRED– starts EcoTOOLS monitoring.
• $SMS_INTERVAL– specifies the SMS recording interval, that is, the

time (in minutes) that data is accumulated locally before being
forwarded to the EcoTOOLS agent. The default is five minutes.

• $SMS_SRV_ADDR– specifies the full (host and port) address to which
the SMS process should listen. The default is Host+15015, where Host
is the name of the current system.

For more information on assignment settings, see the UNIFACE
Reference Manual.

UNIFACE V7.2

5-4 5.3 Limitations (Mar 1999) EcoTOOLS configuration

5.3 Limitations
The following limitations currently apply when using EcoTOOLS
monitoring:

• The EcoTOOLS agent relies upon the TCP/IP network protocol to
communicate with the SMS process. Hence, the remote node must
support TCP/IP.

• Monitoring of the Component Server is not currently supported.
• EcoTOOLS monitoring can only operate in report mode. That is, it can

gather information about UNIFACE processes running on a node, but
cannot take automatic corrective action.

• The SMS process must run on the same system as the UNIFACE
product being monitored.

• If a UNIFACE process, that is, a server or a Web application, is not
using the default SMS port address (15015), the UNIFACE and SMS
processes must be using the same port address.

UNIFACE V7.2

Chapter

UNIFACE Configuration Guide (Mar 1999) 6-5

6 Report Writer Interface (RWI)
configuration
To make it easier for you to install and configure UNIFACE on Microsoft
Windows and Microsoft Windows NT, the contents of this chapter now
appear in the Microsoft Windows Installation Guide.

UNIFACE V7.2

6-6 (Mar 1999) Report Writer Interface (RWI) configuration

UNIFACE V7.2

Chapter

UNIFACE Configuration Guide (Mar 1999) 7-1

7 Microsoft Windows configuration
To make it easier for you to install and configure UNIFACE on Microsoft
Windows and Microsoft Windows NT, the contents of this chapter now
appear in the Microsoft Windows Installation Guide.

UNIFACE V7.2

7-2 (Mar 1999) Microsoft Windows configuration

UNIFACE V7.2

Chapter

UNIFACE Configuration Guide (Mar 1999) 8-1

8 UNIX and MPE/iX configuration
To make it easier for you to install and configure UNIFACE products on
UNIX platforms, the contents of this chapter now appear in the UNIX
and MPE/iX Installation Guide.

UNIFACE V7.2

8-2 (Mar 1999) UNIX and MPE/iX configuration

UNIFACE V7.2

Chapter

UNIFACE Configuration Guide (Mar 1999) 9-1

9 OpenVMS configuration
To make it easier for you to install and configure UNIFACE products on
OpenVMS platforms, the contents of this chapter now appear in the
OpenVMS Installation Guide.

UNIFACE V7.2

9-2 (Mar 1999) OpenVMS configuration

UNIFACE V7.2

Chapter

UNIFACE Configuration Guide (Mar 1999) 10-1

10 Macintosh configuration
To make it easier for you to install and configure UNIFACE products on
Macintosh platforms, the contents of this chapter now appear in the
Macintosh Installation Guide.

UNIFACE V7.2

10-2 (Mar 1999) Macintosh configuration

UNIFACE V7.2

Chapter

UNIFACE Configuration Guide (Mar 1999) 11-1

11 OS/2 configuration
To make it easier for you to install and configure UNIFACE products on
OS/2, the contents of this chapter now appear in the OS/2 Installation
Guide.

UNIFACE V7.2

11-2 (Mar 1999) OS/2 configuration

UNIFACE Configuration Guide (Mar 1999) A-1

Appendix

UNIFACE V7.2

A UNIFACE Server Monitor
The UNIFACE Server Monitor, available in UNIX and Microsoft
Windows NT environments, allows you to monitor and control the status
of the UNIFACE daemons and processes that are active in your network.
These include:

• The UNIFACE Name Server on each node
• The UNIFACE Message Daemon on each node
• The UNIFACE Application Servers for asynchronous component

execution on each node

(These daemons and processes are discussed in section 4.2 Assignments
for a distributed environment and section 4.3 Using the UNIFACE Name
Server.)

The Monitor is invoked from the command line as follows:

pdmon {/cmd= Command {Options}} /dnp =Protocol

Where:

• The commands available with /cmd= , as well as the Options available
for each /cmd= Command, are shown in table A-1. The Options can be
provided in any order.

• If /cmd= is not present, /cmd=info is the default.
• For /cmd= and all Options, the leading slash (/) can be replaced by a

hyphen (-). For example, -cmd=info is also valid.
• Protocol is the network protocol to use to access the requested daemon

or process on the selected host. For example, TCP: .

UNIFACE V7.2

A-2 (Mar 1999) UNIFACE Server Monitor

Table A-1 Commands and options available with /cmd= switch. part 1 of 2

Command Other options available Description Default

/cmd=cinf

Ask the UNIFACE
Message Daemon on the
specified host to display
conversation information.

{/hst =Hostname} Hostname is the name of the host
where the Message Daemon is
running.

Local
machine

{/lsn =Port} Port is the port where the Message
Daemon is attached.

13013

/cmd=info

Ask the UNIFACE
Message Daemon on the
specified host to display
information about the
asynchronous Application
Servers.

{/hst =Hostname} Hostname is the name of the host
where the Message Daemon is
running.

Local
machine

{/lsn =Port} Port is the port where the Message
Daemon is attached.

13013

/cmd=tran

Ask the UNIFACE Name
Server daemon on the
specified host to display
the result of assigning
the component
ComponentName. This
allows you to test the
assignment file
translations that are
currently established.

/asx= ComponentName ComponentName is the name of
the component to be assigned.

—

{/sec= ComponentType} ComponentType is SVCor RPT,
indicating that ComponentName
should be translated using the
assignment file section
[SERVICES_EXEC] or
[REPORTS_EXEC], respectively.

SVC

{/hst =Hostname} Hostname is the name of the host
where the Name Server is running.

Local
machine

{/lsn =Port} Port is the port where the Name
Server is attached.

14014

/cmd=init

Ask the UNIFACE Name
Server daemon on the
specified host to reload its
assignments from the
global and local
assignment file. (See
section 4.3.2
Assignments on the
Name Server side.)

{/hst =Hostname} Hostname is the name of the host
where the Name Server is running.

Local
machine

{/lsn =Port} Port is the port where the Name
Server is attached.

14014

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) A-3

/cmd=shut

Ask the UNIFACE
Message Daemon on
the specified host to
shut down the
specified asynchronous
Application Server.

{/hst =Hostname} See /cmd=info . Local
machine

{/lsn =Port} See /cmd=info . 13013

{/ust= UnifaceServerTyp
e}

The symbol used to indicate the
server type when the path to the
Application Server was opened,
usually ASV. (See section 4.2.1
Assignments on the client side.)

ASV

{/usr= UserName} UserName is the name of the user
who started the UNIFACE Server to
be shut down.
Both the /ust and /usr options must
be specified for a server to be shut
down. Otherwise, no action is taken.

Current
user

/cmd=stop

Stop the UNIFACE
Message Daemon or the
UNIFACE Name Server
daemon on the specified
host. (A daemon that has
been stopped must be
restarted manually.)

{/dmn= Daemon} Daemon is UMDor UNS. UMD

{/hst =Hostname} Hostname is the name of the host
where the Message Daemon or the
Name Server is running.

Local
machine

{/lsn =Port} Port is the port where the Message
Daemon or the Name Server is
attached.

For UMD,
13013
For UNS,
14014

/cmd=help

Display a summary of
available Monitor
commands.

— — —

Table A-1 Commands and options available with /cmd= switch. part 2 of 2

Command Other options available Description Default

UNIFACE V7.2

A-4 (Mar 1999) UNIFACE Server Monitor

Examples

• To get ‘help’ information for the Monitor, use the following command:
pdmon /cmd=help

• To get information about the UNIFACE Servers on the current
machine (default port), use either of the following commands:
pdmon
pdmon /cmd=info

• To test the UNIFACE Name Server translation mechanism, where
the Name Server is using port 14015 (rather than the default port
14014), use the following command:
pdmon /cmd=tran /lsn=14015 /asx=myownreport /sec=rpt

• To ask the UNIFACE Name Server to reload its assignment files,
where the Name Server is using port 14015 (rather than the default
port 14014), use the following command:
pdmon /cmd=init /lsn=14015

• To stop the UNIFACE Name Server, running on node phoenix, while
logged onto node roc, use the following command:
pdmon /cmd=stop /dmn=UNS /hst=phoenix

• To shut down a UNIFACE Application Server for user ‘test’ on the
local machine, use the following command:
pdmon /cmd=shut /ust=ASV /usr=test

UNIFACE Configuration Guide (Mar 1999) B-1

Appendix

UNIFACE V7.2

B Microsoft Windows initialization
files
This appendix presents a complete list of the sections, and their settings,
that can be specified in the usys.ini file. For information on the
changes to this file between UNIFACE V6.1, V7.1, and V7.2, refer to
Migration to UNIFACE V7.2.

B.1 [ACCELERATORS]

This section allows you to define the logical to physical mapping used for
menu acclelerators. Using this, you can map a logical function, such as
File–>Open, to a keyboard sequence such as Control+F7. Each entry has
the syntax:

logical_name=keystroke_combination

where:
logical_name is the name used in the Menu Definition form. Logical
names that begin with udbg_ designate Debugger menu options.

keystroke_combination is the accelerator displayed next to the menu item
when the menu item is displayed. Key modifiers (Shift, Alt and Control)
can be connected with the plus (+), minus (-) or space characters. Keys
and modifiers are case-insensitive.

For example:
fileopen=Ctrl+O
udbg_start=Alt-G

UNIFACE V7.2

B-2 B.2 [APPLICATION] (Mar 1999) Microsoft Windows initialization files

i
Note: Some keys are reserved and should not be redefined because they
have a standard meaning when using Microsoft Windows.

B.2 [APPLICATION]

This section allows you to define the icon and logo used by your
application. The following settings are available:

ICON

Specifies the name of the .ico file that is to be used as the application
icon when the application (or session panel) is minimized. This setting
does not influence the icon displayed by the Programs menu. The
Programs menu takes the icon directly from the .exe file and is not
influenced by this setting. To change the icon in the Programs menu,
click Icon in the Properties dialog of the Programs menu.

LOGO16

Specifies the name of an image to be used as the application start-up logo
on 16-color displays. To display glyphs as the 16-color logo, use the
^ GlyphName syntax. To display bitmaps as the 16-color logo, use the
@FileName syntax. If no 16-color logo is specified, the logo supplied with
UNIFACE is used.

LOGO2

Specifies the name of an image file to be used as the application start-up
logo on monochrome displays. To display glyphs or bitmaps as the
monochrome logo, use the ^GlyphName or @FileName syntax. If no
monochrome logo is specified, the logo supplied with UNIFACE is used.

LOGO256

Specifies the name of an image file to be used as the application start-up
logo on 256-color displays. To display glyphs as the 256-color logo, use the
^ GlyphName or @FileName syntax. If no 256-color logo is specified,
UNIFACE uses the 16-color logo instead.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) B.3 [BACKGROUND] and [FOREGROUND] B-3

LOGOTIME

Specifies the time, in seconds, that the logo is displayed. Allowed values
are 0 through 60 . The default is 5.

B.3 [BACKGROUND] and [FOREGROUND]

These sections determine the mapping of UNIFACE screen attributes to
screen colors. Each section defines four palettes of eight colors, each
specified as an RGB (red, green, or blue) triple.

The color of an object consists of a foreground and a background color,
each of which is taken from its own section. The combined state of the
bright and blink video attributes determines the palette that is used. The
color number (0 through 63) determines which color of each palette is
used.

When specifying colors, foreground colors will be mapped to the nearest
color that can always be displayed as a ‘solid’ color by the display device
being used. This limits your choice to the 16 or 20 colors in the Microsoft
Windows system palette.

These sections can also be changed via the Colors option in the Setup
menu. The default color settings supplied with UNIFACE are shown in
table B-1:

Table B-1 Default UNIFACE color settings.

Color Foreground color Background color

System default 0 0

Blue 8 1

Green 16 2

Cyan 24 3

Red 32 4

Purple 40 5

Yellow 48 6

White - 7

Black 56 -

UNIFACE V7.2

B-4 B.4 [DB3] (Mar 1999) Microsoft Windows initialization files

B.4 [DB3]

This section is used by the dBase III driver. For more information on
supported settings for dBase III, refer to the dBase III Driver Guide.

B.5 [DNT]

This section specifies control information used by the PathWorks (DNT)
driver. It has the following setting:

MAXREC

Controls the maximum size of records used by the DECnet (DNT) driver.
Allowed values are 50 through 8192 . The default is 4000 .

B.6 [GFP]

This section specifies control settings used by the component editor. It
has the following settings:

NEWFORM

Specifies the size and location used by the component editor when a new
component is created. The format is as follows:

NEWFORM =x_pos, y_pos, width, height

where x_pos and y_pos are window coordinates for the top left corner of
the component, and width and height specify the dimensions of the
component.

WIDGETS

Specifies the logical widgets that will appear on the component editor’s
palette, rather than on the palette’s drop-down list of available widgets.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) B.7 [GRAPHIC FILTERS] B-5

B.7 [GRAPHIC FILTERS]

This section specifies the graphic filter DLLs that allow UNIFACE to
support particular image file formats. Each entry in this section has the
following format:

f={path}filter.flt,ext,dialog

where:

• f is the image subtype. For example, a Q defines image type IQ.
• path optionally specifies the location of the graphics filter.
• filter specifies the name of the graphics filter DLL.
• flt specifies the extension of the graphics filter DLL, usually .flt .
• ext specifies the default file extension used for the images handled by

the graphics filter.
• dialog specifies whether the control dialog of the filter (if it has one)

is used. Allowed values are on and off .

FILTER

Specifies the names of any external filters that you want to use. It has
the following format:

FILTER{ A-Z}= filtername

where:

• A-Z is the external filter you have defined with an image type of IA
through IZ.

• filtername specifies the name of the external filter.

i
Note: If you intend to write your own image filters for use with Microsoft
Windows 95 or Microsoft Windows NT, ensure that they are ALDUS
Windows compliant. Export the functions defined in your filters using the
_declspec (dllexport) convention.

B.8 [HELP]

This section specifies the files to be used when online help is requested
within the Development Environment or within displayed messages. It
has the following settings:

UNIFACE V7.2

B-6 B.9 [HISTORY] (Mar 1999) Microsoft Windows initialization files

DEFAULT

Specifies the file to be used when online help is requested within
UNIFACE. If no help file is specified, no help is available.

MESSAGES

Specifies the file to be used when online help is requested on displayed
messages. If no help file is specified, no help is available.

B.9 [HISTORY]

This section records the most recent command lines used to start
UNIFACE. A maximum of 10 command lines can be recorded. For
example:
1=/bat /tst
2=/asn=test.asn

UNIFACE automatically prevents the creation of duplicate entries for
the same command line history. The Microsoft Windows 95 and Microsoft
Windows NT versions of UNIFACE store this information in the
Registry.

B.10 [INSTALL]

This section contains information about the current installation. This
section is only used by the Microsoft Windows 3.x version of UNIFACE.
The Microsoft Windows 95 and Microsoft Windows NT versions of
UNIFACE store this information in the Registry. It has the following
settings:

PROJECT

Specifies the directory in which UNIFACE will place all your compiled
components and applications. This directory is also the default directory
in which UNIFACE applications are started, and where files are created
by UNIFACE utilities whenever a complete path is not specified. The
default is C:\USYS\PROJECT.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) B.11 [LAYOUT] B-7

ROOT

Specifies the root UNIFACE installation directory. The default is
C:\USYS .

VERSION

Specifies the current version of UNIFACE (7.2).

B.11 [LAYOUT]

This section is used to specify information that is used for form layouts.

HISTORY

Specifies whether a form containing a split bar is opened in the same
location that it had when it was last closed. If set to on , the position of
the form and split bar are saved to the Windows Registry. If set to off ,
the form state is stored in memory only and is lost when you close
UNIFACE. The default value is on.

B.12 [OCX]

This section is used to specify information about the environment in
which OCXs will run. It has the following setting:

OCXTRACE

Specifies the OCX messages that are directed to the Transcript Window.

UNIFACE V7.2

B-8 B.13 [PATHS] (Mar 1999) Microsoft Windows initialization files

Allowed values are summed by adding the desired message codes shown
in table B-2:

For example, setting OCXTRACE to 6 would result in all warning and
information messages being logged. The default is 1, only error messages
are logged.

USERMODE

Specifies the setting of the ambient UserMode property for all OCXs in a
UNIFACE application. Allowed values are DESIGNand RUN.

If set to DESIGN, the UserMode for all OCXs is set off . If set to RUN, the
UserMode is set on . If this setting is not specified, the setting for
UserMode depends on how the application is started. If the form
component is run within the Development Environment using
File–>Test, UserMode is set off ; in all other cases, UserMode is set on .

B.13 [PATHS]

This sections specifies the path names of various software components. It
can contain the following settings:

HELPDIR

Specifies the name of the directory where the UNIFACE online
documentation is located. This setting is only relevant if you have
installed the UNIFACE online documentation. The default directory is
the \help subdirectory of the installation directory.

Table B-2 Codes for selecting OCX messages in the Transcript Window.

Code Description

0 No messages logged.

1 Log error messages (default)

2 Log warning messages

4 Log information messages

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) B.14 [PRINTER] and [SCREEN] B-9

IMAGES

Specifies the name of the directory where image files are stored. You can
specify more than one directory by using a comma (,) separated list. The
default is the working directory. UNIFACE always looks in the current
directory first. If the image file cannot be found, UNIFACE searches the
directories specified by this setting. If the image is still not found, an
error is displayed. If you use an explicit path to specify an image, this
setting is ignored.

USYS

Specifies the name of the UNIFACE system directory. The default is the
USYSsubdirectory in the parent directory of the BIN subdirectory. If this
can not be resolved, the default is the current directory. The Software
Enable Key (SEK) files and usys.asn must always be in the USYS
subdirectory. Many other files are assumed to be in the USYS
subdirectory as well, but can be moved to a different location by adding
an entry to usys.asn . These files include the UOBJ and USYSANA
tables, the UNIFACE run-time forms, and all UNIFACE forms.

WORKDIR

Specifies the name of the current directory during the UNIFACE session.
This will be the directory where forms and database tables are created,
unless overridden with an assignment. Microsoft Windows allows you to
specify the working directory in the Program’s Properties. This is
overridden by a WORKDIR specification. The default is the current
directory.

B.14 [PRINTER] and [SCREEN]

These sections specify the fonts available for printing and displaying,
respectively. There are separate sections for screen and printer fonts,
because a font that is suitable for the screen may print very slowly if it
does not match exactly with a built-in printer font. If you want true ‘what
you see is what you get’ (WYSIWYG), you should make both sections
identical.

UNIFACE V7.2

B-10 B.14 [PRINTER] and [SCREEN] (Mar 1999) Microsoft Windows initialization files

When the three character styles (bold, italic and underline) are all
enabled in the [UPI] section, only one font can be specified. When a style
is disabled (it is recommended that you disable italic), two fonts can be
specified. When two styles are disabled, four fonts can be specified, and
when all styles are disabled, all eight fonts can be used.

It is recommended that you select only fixed-pitch fonts. Selecting very
large fonts will not give attractive results, as all characters are
positioned (and clipped) in a fixed-size character grid.

If you are using an enhanced printer device translation table, you can
also specify logical to physical font mappings in the [PRINTER] section.
If you want to use a particular physical font for displaying information,
and another font for printing, define the same logical font in each section,
but use a different physical font in each mapping.

By default, UNIFACE uses the same logical fonts for displaying and
printing. However, these logical fonts are mapped to different physical
fonts in the [PRINTER] and [SCREEN] sections of the usys.ini file.
Each entry has the following format:

logical_font=font, script, pitch, style

For example:
font0=Courier New,Western,9,regular

Logical printer mapping

The [PRINTER] section also allows you to define the logical to physical
printer mapping used by UNIFACE. Each entry takes the following form:

logical_printer=physical_printer

For example:
myprinter=\PRINTERS\HPLASERJ 4Si
landsc=\PRINTERS\HPLASERJ 4Si

Within the Registry, mappings are held in the [PRT_logical_printer]
subkey.

You can define more than one logical name to be mapped to the same
physical printer. However, you cannot define multiple logical printers
with the same name. It is recommended that you do not edit the contents
of this section. Instead, use the Printer item on the Setup menu to define
your logical to physical printer mappings.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) B.15 [SINGLE_INSTANCE] B-11

B.15 [SINGLE_INSTANCE]

This section is used to control whether applications can have more than
one instance running. It has the following syntax:

application=window_title

When a new instance of a UNIFACE application is started, UNIFACE
first checks whether that application is listed under the
[SINGLE_INSTANCE] section. If so, it looks for a window which starts
or ends with the specified title. The title string is not case sensitive. If
such a window is found, the focus changes to the existing application, and
a second instance is not started.

For example, to prevent a second instance of the UNIFACE Development
Environment from being started, enter the following definition:
[SINGLE_INSTANCE]
IDF=UNIFACE Seven

B.16 [STATE]

This section records the state of certain UPI objects when the user exits
an application. All settings in this section are automatically updated by
UNIFACE whenever it terminates.

GFPPALETTE

Determines the visibility of the Tool Palette within the Development
Environment. Allowed values are 0 (off) or 1 (on). The default is 1.

GFPSTATUS

Determines the visibility of the Status Box within the Development
Environment. Allowed values are 0 (off) or 1 (on). The default is 1.

PANEL

Determines the visibility of the Session Panel and the toolbar. Allowed
values are on or off . The visibility can be set on or off at run time using
the Panel... command on the application panel, or with GOLD+X. The
default is on .

UNIFACE V7.2

B-12 B.16 [STATE] (Mar 1999) Microsoft Windows initialization files

PANELMIN

Records whether the panel was last minimized or not. Allowed values are
on or off . The default is off .

PANELPOS

Holds the position of the floating session panel as a horizontal position,
vertical position pair. This setting is only used if the panel position in the
start-up shell form is set to default. The default is 0,0 .

PANELSIZE

Holds the size of the floating Session Panel as a width, height pair. The
default is 0,0 .

WINDOWMAX

Determines the initial state of the application window (using the entire
screen or not). Allowed values are on or off . The default is off .

WINDOWPOS

Holds the position of the application window as a horizontal position,
vertical position pair. The default is the default Microsoft Windows
position.

WINDOWSIZE

Determines the initial size of the application window. The application
window can be resized at run time. The values should be supplied as a
pair of width, height values. The default is the default Microsoft
Windows window size.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) B.17 [TCP] B-13

B.17 [TCP]

This section is used by the TCP/IP drivers. It can contain the following
settings:

ETC

Specifies the location of the Services file. This setting is used by the FTP
TCP/IP driver.

MAXREC

Controls the maximum size of records used by all TCP/IP drivers.
Allowed values are 256 through 8192 . The default is 4096 .

SOCKETS

Specifies the maximum number of open channels. The default is 2. This
setting is used by the SUN NFS TCP/IP driver.

TIMEOUT

Specifies the maximum time (in seconds) before a time-out error is
generated. The default is 0, which means an infinite amount of time. This
setting is used by the FTP TCP/IP driver.

TCPSTRIPPEDDOMAINRETRY

Specifies whether UNIFACE should first attempt to connect to the target
host using any specified domain information and, if this fails, remove the
domain information from the target host name and try again to connect.

For more information on the use of this setting, see the Microsoft
Windows Installation Guide.

UPSVINACTIVETCP

Specifies the maximum wait time, in minutes, on a TCP/IP network path
for a server. If the client has been inactive for the specified wait time, the
server is automatically terminated.

If the UPSVINACTIVETCP setting is not specified, the server continues
running regardless of how long the client is active. The maximum wait
time that can be specified is appropriately 18 hours. It is recommended
that you specify a wait period suitable for your working environment (for
example, eight hours).

UNIFACE V7.2

B-14 B.18 [TOOLBAR] (Mar 1999) Microsoft Windows initialization files

For more information on the use of this setting, see the Microsoft
Windows Installation Guide.

UTCP_RB

Sets the maximum TCP receive buffer size in kilobytes.

UTCP_SB

Sets the maximum TCP send buffer size in kilobytes.

UTCP_NAGLE

Causes the default behavior of the TCP_NODELAY option to be disabled.
This is a boolean option and can be set to any non-zero value.

B.18 [TOOLBAR]

This section controls the availability of the various toolbar controls. It
can contain the following settings:

CHARSETS

Determines the availability of a selection button on the far left-hand side
of the toolbar for each of the character sets 0 through 7. Allowed values
are eight comma-separated 0/1 values; default is 1,1,1,1,1,0,0,1 .

CSETACCELERATOR

Controls whether the character set can be set using the shortcuts Alt+0
through Alt+7. Allowed values are 0, 1, or 2. When set to 0, the shortcuts
are not available. When set to 1, the shortcuts are only available when
the toolbar is visible. When set to 2, the shortcuts are always available.
The default is 2.

FONTLIST

When set on , a combo box listing the available fonts is displayed on the
toolbar. This is only useful when more than one font is available. The
default is on .

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) B.19 [UDDE] B-15

MENUTOGGLE

When set on , the Menu Toggle button will be displayed on the far
right-hand side of the toolbar. This button will be disabled (dimmed)
when only one menu is available. The default is off .

MDICONTROLS

When set on , the MDI combo box, tile, and cascade buttons are shown on
the toolbar. The default is off .

STYLEBUTTONS

When set on , the Bold, Italic and Underline buttons are shown on the
toolbar. One or more of these buttons may be disabled (dimmed),
depending on the setting of bold, italic, and underline in the [UPI]
section. The default is on .

VIEWTOGGLE

Allowed values are on or off . When on , a View button is displayed on the
toolbar. The default is on .

B.19 [UDDE]

This section controls the use of Dynamic Data Exchange (DDE) support
from within a UNIFACE application. It has the following settings:

DDE

Controls whether DDE support is available within a UNIFACE
application. Allowed values are on and off . The default is off .

TIMEOUT

Controls the length of time (in seconds) that can elapse before a DDE
transaction will generate a time-out error. The default is 1.

UNIFACE V7.2

B-16 B.20 [UNIFACE_DLLS] (Mar 1999) Microsoft Windows initialization files

B.20 [UNIFACE_DLLS]

This section specifies the DLLs used by UNIFACE. It has the following
settings:

DEMANDLOAD

Specifies the DLLs that UNIFACE should search when it needs a
particular 3GL function. Separate DLL names with commas or
semicolons. If you do not specify a full path name for a DLL, UNIFACE
loads it from the directory specified in the PATH setting. This setting is
always taken from the default .ini file.

You can load a maximum of 32 DLLs as DEMANDLOAD with a
maximum string size of 512 characters.

NLS

Specifies the National Language Support (NLS) used by UNIFACE. You
must have the appropriate version of Microsoft Windows installed for a
particular NLS module to function. If you select an NLS module that does
not exist, or if the NLS module detects that the version of Microsoft
Windows for which it was designed is not running, UNIFACE
automatically reverts to the build-in USA version. This setting can be
taken from either the local or default .ini file.

PATH

Specifies the directory where UNIFACE DLLs are located. The default is
the working directory. If no directory is specified here, the current
directory, the DOS path, the Microsoft Windows and the SYSTEM
directories are searched in that order. This increases application load
time (if the DLLs are found at all). This setting is always taken from the
default .ini file.

PRELOAD

Specifies the DLLs that UNIFACE should load at start-up, regardless of
whether it needs any of the functions in the DLL. Separate DLL names
with commas or semicolons. If you do not specify a full path name for a
DLL, UNIFACE loads it from the directory specified in the PATH setting.
This setting is always taken from the default .ini file.

You can load a maximum of 32 DLLs as PRELOAD with a maximum
string size of 512 characters.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) B.21 [UPI] B-17

B.21 [UPI]
This section determines the appearance or behavior of many Universal
Presentation Interface (UPI) objects under Microsoft Windows. The
following settings are available:

AUTOIMECLOSE

Controls whether the Input Method Editor (IME) is disabled when the
focus changes to a field that only allows input in Font 0. Setting
AUTOIMECLOSE on disables the IME. The default is on .

When a read-only field receives focus, the status of the IME is
unchanged. If the field is defined as Special String, the IME is enabled;
otherwise, it is disabled.

AUTOIMEGOLD

Controls whether the IME is disabled when the GOLD key is used. Once
the complete GOLD key sequence has been entered, the IME is returned
to its previous state. Setting AUTOIMEGOLD on disables the IME when
the GOLD key is used. The default is on .

AUTOIMEOPEN

Controls whether the IME is automatically enabled when the focus
moves to a field that allows double-byte characters (such as kanji).

When a read-only field receives focus, the status of the IME is
unchanged. If the field is defined as Special String, the IME is enabled;
otherwise, it is disabled. The default is off .

AUTOMAXIMIZE

Controls whether forms are automatically maximized when they do not
fit in the application window. This setting also controls whether a
component that was previously maximized is maximized again when it is
run again. Allowed values are on or off . If set off , components are not
automatically maximized, unless the Quick Zoom function is used. The
default is on .

BOLD

The settings Bold, Italic, and Underline determine if the respective
character attributes are available or are translated to a different font
instead. Allowed values are on or off . The default is on .

UNIFACE V7.2

B-18 B.21 [UPI] (Mar 1999) Microsoft Windows initialization files

BUTTONSPACING

Determines the number of pixels between adjacent buttons on a panel.
The value can range from 0 through 10 . The default is 2.

BUTTONSTYLE

Specifies the appearance of buttons and borders on the toolbar and
panels. Allowed values are shown in table B-3:

BUTTONTYPE

The type of button on session and component panels. Allowed values are
Text or Icon . The default is Text .

CELLHEIGHT

Specifies the cell height (as a percentage of the cell height of Font 0) used
to paint widgets. The default is 100 , that is, use the same cell height as
Font 0. Allowed values are 100 and 200 .

COLORINVERSE

Controls the color value used as the default for inverse color objects. The
default is 7.

COLORNORMAL

Controls the color value used as the default for normal color objects. The
default is 56 .

Table B-3 BUTTONSTYLE allowed values.

Value Description

0 Normal Microsoft Windows 3.x appearance. For Microsoft
Windows 3.x, this is the only supported value.

1 Normal Microsoft Windows 95 appearance. This is the default
for Microsoft Windows 95 and Microsoft Windows NT.

2 The Microsoft Windows 98 (flat toolbar) appearance.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) B.21 [UPI] B-19

DEBUGLINES

The number of lines remembered by the list box in the Proc debugger.
Allowed values are 5 through 100 . The default is 100 .

FMTFORMPANELS

Allowed values are on or off . This setting is like FMTSESSIONPANEL,
but applies to the component-level panels. The default is off .

FMTSESSIONPANEL

Determines whether the formatting information that is embedded in the
Session Panel is honored or ignored. For portability, the default is off
(that is, ignore). If you have configured text buttons, this setting is
ignored and formatting is always applied. The default is off .

FOCUSFLASH

Allowed values are on or off . When on , a flashing rectangle indicates
where the keyboard focus is, when it is on a button or image. The default
is on .

FRAMEALIGN

Determines whether a frame, such as an area, line, or named area frame,
is painted on the left edge of a cell (so that it can be aligned with widget
borders), or centered. Allowed values are Center or Left . The default is
Center .

FRAMETYPE

The type of graphic used to draw frames on components. Allowed values
are Normal , Etched , or Shaded . Note that the Etched and Shaded
types do not look attractive on a white background. The Shaded type also
has some inherent problems with intersecting frames. The default is
Etched .

ITALIC

Allowed values are on or off . The default is off .

UNIFACE V7.2

B-20 B.21 [UPI] (Mar 1999) Microsoft Windows initialization files

KEYPADENTERACCESS

Specifies whether the keypad Enter key is routed through the keyboard
translation table for command buttons. Allowed values are on (keypad
Enter key activates the default command button), or off (key is routed
through keyboard translation table. The default is off .

LINESPACE

Allows you to specify additional spacing between text lines in the
background. Recommended values are between 0 and 3. The default is 3.

MINRESOURCE

The percentage of system resources that UNIFACE should try to leave
available to other applications. When this percentage is reached,
UNIFACE will release some resources before it allocates new ones; notice
that components are minimized automatically. The default value is 70
(percent), but any value between 10 and 90 is acceptable. The resources
referred to are in the data segment of the USER module.

MSGLINES

The number of messages remembered by the message line. Allowed
values are 5 through 100 . The default is 100 .

PAINTCACHE

Allowed values are on or off . When on , the paint cache accelerates
screen updates at the expense of increased memory consumption. The
default is off .

PANELTOOLTIP

Specifies whether tool tip text (when available) appears for icon buttons
in panels. Allowed values are on or off . The default is on .

PANELTYPE

Determines the location of the Session Panel. Allowed values are Top,
Left , Bottom , Right , Floating , and None. The default is Floating .

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) B.21 [UPI] B-21

POPUPDELAY

Determines the time delay between pressing the MENU mouse button
and the appearance of the pop-up menu. If this setting is not specified at
all, the default used is the double-click time set in the Microsoft Windows
Control Panel. Allowed values are the time (in milliseconds) of the delay.

PROFILE

Determines the prefix character used when displaying profile characters
in widgets (but not unifields). Allowed values are ANSI character codes.
The default is 165 (Japanese), 41380 (Chinese and Korean), or 183 for
all other character sets.

SCROLLBARS

Determines the appearance of the entity scroll bars on components.
Allowed values are Narrow , Standard , or Aligned . The default is
Standard .

Narrow scroll bars fit in the width of a single character cell, and can
therefore be used on existing components. Standard scroll bars have the
Microsoft Windows standard width of a scroll bar. While more attractive,
they may be too wide for existing (crowded) components. Aligned scroll
bars are standard Microsoft Windows scroll bars, rounded to the nearest
whole cell width.

SOUND

Enables or disables all beeps and buzzes generated by UNIFACE.
Allowed values are on or off . The default is on .

TEXTFRAME

Editable text fields can optionally have a border. This can make
components dramatically more attractive. The available types of border
are shown in table B-4:

Table B-4 Allowed values of TEXTFRAME. part 1 of 2

Setting Effect

None No border

Plain Narrow black line

UNIFACE V7.2

B-22 B.21 [UPI] (Mar 1999) Microsoft Windows initialization files

Etched and Bevelled work best when the background of the component
is not white or dark gray, because these are the colors used to draw the
frame. On a white background, Shaded looks quite attractive. Note that
fields that are not editable do not have a border. The default is Etched .

TRANSLINES

The number of lines remembered by the Transcript Window before it
starts losing lines at the top. If this setting is not specified at all, a default
of 100 is used. The default setting in the .ini file of 16,000 should be
adequate for most applications. The allowed values are 100 through
16380 . The default is 100 .

UNDERLINE

Allowed values are on or off . The default is on .

WINDOWONUNIFIELD

Enables or disables overlaying a Unifield with a window. The default
value is off for both 16-bit Windows and 32-bit Windows.

i
Note: For 16-bit Windows applications, setting the value to on may result
in insufficient memory. Therefore, this switch should only be set to on
when using a testing application, such as QARun, that needs the window
handle.

Etched Makes the field appear sunken

Bevelled Makes the field appear raised

Shaded A more native shading effect

Table B-4 Allowed values of TEXTFRAME. part 2 of 2

Setting Effect

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) B.22 [USER] B-23

B.22 [USER]

This optional section contains the user name and optionally the password
of the user who runs the current workstation. The following settings are
available:

NAME

Specifies the user name with which a user will log on. The default is an
empty string.

PASSWORD

Specifies the password with which a user will log on.

Both of these settings are available in Proc through the $user and
$password functions. If accessed via Proc, the password is not
encrypted. The default is an empty string.

B.23 [USERDLLS]

This section has the following settings:

DEMANDLOAD

Specifies the user-defined DLLs that UNIFACE should search when it
needs a particular 3GL function. Separate DLL names with commas or
semicolons. If you do not specify a full path name for a DLL, UNIFACE
loads it from the directory specified in the PATH setting.

You can load a maximum of 32 DLLs as DEMANDLOAD with a
maximum string size of 512 characters.

PATH

Specifies the directory where user-defined DLLs are located. The default
is the working directory. If no directory is specified here, the current
directory, the DOS path, the Microsoft Windows and System directories
are searched in that order. This increases application load time (if the
DLLs are found at all).

UNIFACE V7.2

B-24 B.24 [WIDGETS] (Mar 1999) Microsoft Windows initialization files

PRELOAD

Specifies the user-defined DLLs that UNIFACE should load at start-up,
regardless of whether it needs any of the functions in the DLL. Separate
DLL names with commas or semicolons. Use this setting to list DLLs
that can do their job without explicitly being called by UNIFACE, or
when you want to avoid DLL loading delays halfway through your
application.

You can load a maximum of 32 DLLs as PRELOAD with a maximum
string size of 512 characters.

B.24 [WIDGETS]

This section is used to make the mapping between logical and physical
widgets. Entries in this section have the following format:

logical_name=physical_name{(property1=value1; property2=value2; ...) }

UNIFACE Configuration Guide (Mar 1999) C-1

Appendix

UNIFACE V7.2

C X resources
This appendix presents a complete list of the X resources used by the
OSF/Motif version of UNIFACE to customize the appearance and
behavior of applications.

C.1 Introduction
The X resources used by UNIFACE are specified in the xdefault.txt
file (xdef_jpn.txt for kanji), located in the UNIFACE installation
directory. All UNIFACE applications have the class ‘Uniface’. For
example, to define that all UNIFACE applications should have a white
foreground and a black background, the following resources are set:
Uniface*background: black
Uniface*foreground: white

This not only affects the UNIFACE Development Environment, but all
applications generated with it. The rules of precedence used by X dictate
that actual application names take precedence over classes. For example,
the following settings make the Development Environment appear as
black on white, and all other UNIFACE applications as white on black:
Uniface*background: black
Uniface*foreground: white
idf*background: white
idf*foreground: black

Table C-1 shows a summary of the resources used by the OSF/Motif
version of UNIFACE:

UNIFACE V7.2

C-2 C.1 Introduction (Mar 1999) X resources

Table C-1 Summary of UNIFACE X resources. part 1 of 3

X resource/class Description

Font resources

xfont n

xfont nb

xfont ni

xfont nbi

Normal font rendering for font n.

Bold font rendering for font n.

Italic font rendering for font n.

Combined bold and italic rendering for font n.

ufileselectionbox Specifies the attributes for fonts used within selection
boxes generated by the filebox instruction.

udebugbox Specifies the attributes of fonts used in debug dialog
boxes.

upanelbutton Specifies the attributes of fonts used within control
panel buttons.

umsgdialog Specifies the attributes of fonts used within dialog
boxes generated by the askmess statement.

uradiodialog Specifies the attributes of fonts used to display radio
button text within dialog boxes generated by the
askmess statement.

statuswindow Specifies the attributes of fonts used in the floating
Status Window.

Panel position resources

uappanelon Specifies whether panels are displayed.

uappanelposition Specifies the position of panels.

uformpanelon Specifies whether form component panels are
displayed.

uformpanelposition Specifies the position of form components.

Color resources

foreground_ n Application foreground color definition for color_n.

foreground_ nh Application highlighted foreground color definition for
color_n.

foreground_ nb Application blinking foreground color definition for
color_n.

background_ n Background color definition for color_n.

background_ nh Application highlighted background color definition for
color_n.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) C.1 Introduction C-3

background_ nh Application blinking background color definition for
color_n.

colorscheme Specifies color inheritance of a widget.

Menu resources

accelerator Specifies the keystroke sequences for accelerator
keys.

acceleratorText Specifies the text that appears on menu items for
accelerator keys.

menubar Specifies the attributes of the attributes of the
(horizontal) menu bar.

menuoption Specifies the attributes of options in the menu bar.

menuoptionseparator Specifies the attributes of the pull-down menu’s
separator.

pulldownmenu Specifies the attributes of all pull-down menu items.

pulldownmenuoption Specifies the attributes of individual items on a
pull-down menu.

IME resources

uimopen Specifies whether the IME is automatically enabled for
a field that supports double-byte input.

uimgold Specifies whether the IME is disabled when the GOLD
key is used.

uimclose Specifies whether the IME is disabled when focus
moves to a field that only allows input in font0.

uimstyle Specifies the level of support for the native IME.

Miscellaneous

image_cache Specifies whether images are retained in a cache or
removed from memory after a form component is
closed.

imagefile_path Specifies directory to search for image files.

title.fontlist Specifies window title font (independent of window
manager).

Mwm*title*fontList Specifies window title (for the OSF/Motif window
manager).

Table C-1 Summary of UNIFACE X resources. part 2 of 3

X resource/class Description

UNIFACE V7.2

C-4 C.2 Font resources (Mar 1999) X resources

C.2 Font resources
A font under X governs the way that a particular character is rendered.
This includes the basic shape of the character (Avant Garde, Times,
Helvetica, and so on), the size (10, 12, 14 point, and so on), the orientation
(oblique, italic, and so on) and many other attributes. X uses a 14-part
name to identify a particular font; fortunately some of the parts can be
replaced with asterisks (*).

UNIFACE can use a large number of different fonts in an application.
For example, one font can be used for bold characters, one font for
italicized characters. These fonts are specified as X11 resources.
UNIFACE supports eight internal fonts, numbered 0 through 7, for
western European characters. See the UNIFACE Reference Manual for
more information on character sets.

The basic UNIFACE fonts are specified as follows:

Uniface*xfont n: X font name

where n is the UNIFACE font number (0 through 7).

For example, to set Font 0 to Courier, 14 point and to use ISO 8859-1
characters, the following definition would be used:

ToggleVision Specifies the visual marker used within the check box
widget.

MessageDialog Specifies the attributes of message boxes generated
by the askmess statement.

profile Specifies the prefix character used for displaying
profile characters in widgets.

ufileshell Specifies the attributes of file selection boxes
generated by the filebox statement.

uvextra Specifies the additional space left between lines on a
form component.

use_icons_in_control_panel Specifies whether text or icons appear on command
buttons in a control panel.

old_key_behavior Specifies whether, for compatibility reasons, former
keyboard translation table handling is used.

Table C-1 Summary of UNIFACE X resources. part 3 of 3

X resource/class Description

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) C.2.1 ufileselectionbox C-5

Uniface*xfont0: -adobe-courier-medium-r-normal--14-*-*-*-*-*-iso8859-1

UNIFACE supports different character renderings, for italic, bold, and
combined bold and italic. These are indicated by the suffixes ‘b’, ‘i’, and
‘bi’, respectively. For example, the following settings define all possible
Font 0 and Font 1 renderings:
Uniface*xfont0: -adobe-courier-medium-r-normal--14-*-*-*-*-*-iso8859-1
Uniface*xfont0b: -adobe-courier-bold-r-normal--14-*-*-*-*-*-iso8859-1
Uniface*xfont0i: -adobe-courier-medium-o-normal--14-*-*-*-*-*-iso8859-1
Uniface*xfont0bi: -adobe-courier-bold-o-normal--14-*-*-*-*-*-iso8859-1
Uniface*xfont1: -dec-terminal-medium-r-normal--14-*-*-*-*-*-dec-dectech
Uniface*xfont1b: -dec-terminal-bold-r-normal--14-*-*-*-*-*-dec-dectech
Uniface*xfont1i: -dec-terminal-medium-o-normal--14-*-*-*-*-*-dec-dectech
Uniface*xfont1bi: -dec-terminal-bold-o-normal--14-*-*-*-*-*-dec-dectech

Use the xlsfonts command to list all the available fonts on your system.

C.2.1 ufileselectionbox

The class name for the fonts used within selection boxes generated by the
filebox Proc instruction is ufileselectionbox . You can specify the
following resources:

• labelFontList : The font used for labels within selection boxes.
• buttonFontList : The font used in buttons within selection boxes.
• textFontList : The font used for all text (other than label and

button text) within selection boxes.

For example, to set the font for all labels displayed within selection boxes
generated by the filebox Proc instruction, you would use the following
definition:
Uniface*ufileselectionbox*labelFontList:
-adobe-helvetica-medium-r-normal-14-140-75-75-p-77-iso8859-1

C.2.2 udebugbox

The class name for the fonts used within the debug dialog box is
udebugbox . This is the dialog box activated using the debug Proc
statement. You can specify the following resources:

UNIFACE V7.2

C-6 C.2.3 upanelbutton (Mar 1999) X resources

• labelFontList : The font used for labels within the debug dialog
box.

• buttonFontList : The font used for buttons within the debug dialog
box.

• fontList : The font used for title text within the debug dialog box.
• textFontList : The font used for all text (other than label, button

and window title text) within the debug dialog box.

For example, to set the font used for all labels appearing in the debug
dialog box, you would use the following definition:
Uniface*udebugbox*labelFontText:
-adobe-helvetica-medium-r-normal-14-140-75-75-p-77-iso8859-1

C.2.3 upanelbutton

The class name for all the fonts used within pop-up panel buttons is
upanelbutton . It has one resource, fontList , which specifies the font
used to display text within the buttons.

For example:
Uniface*upanelbutton*fontList:
-adobe-helvetica-medium-r-normal-14-140-75-75-p-77-iso8859-1

C.2.4 umsgdialog

The class name for the fonts used with dialog boxes generated by the
askmess Proc statement is umsgdialog . You can specify the following
resources:

• labelFontText : The font used for label text within the dialog box.
• buttonFontText : The font used to display text within the command

buttons in the dialog box.
• textFontList : The font used to display all text (other than label and

command button text) within the dialog box.

For example, to set the font used for label text within the dialog box:
Uniface*umsgdialog*labelFontList:
-adobe-helvetica-medium-r-normal-14-140-75-75-p-77-iso8859-1

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) C.2.5 uradiodialog C-7

C.2.5 uradiodialog

The class name for the fonts used to display radio button text within
dialog boxes generated by the askmess Proc statement is
uradiodialog . It has one resource, fontList , that specifies the font
used to display radio button text.

For example:
Uniface*uradiodialog*fontlist:
-adobe-helvetica-medium-r-normal-14-140-75-75-p-77-iso8859-1

C.2.6 statuswindow

The class name for the fonts used by the floating Status Window of the
component editor is statuswindow . The Status Window shows the
current status of a selected object.

The font used for the heading labels (shown on the left) is specified by the
titlelabel.fontList resource.

The font used for the values (shown on the right) is specified by the
valuelabel.fontList resource.

For example, to set the heading and value fonts for the Status Window,
the following definitions would be used:

! define title font for Status Window
Uniface*statuswindow*titlelabel.fontList:-b&h-typewriter-medium-r-normal-sans-12
-*-*-*-*-*-iso8859-1

!define values font for Status Window
Uniface*statuswindow*valuelabel.fontList:-b&h-typewriter-medium-r-normal-sans-10
-*-*-*-*-*-iso8859-1

C.2.7 Logical font mappings

The mapping of logical widget font names to physical font names is
specified by using X resources. The logical font name is given on the
left-hand side of the assignment, the physical name on the right-hand
side. For example, to define the logical font efont , the following X
resource setting would be made:
Uniface*efont: -b&h-lucidatypewriter-medium-r-normal-sans-10-*-*-*-*-*-iso8859-1

UNIFACE V7.2

C-8 C.3 Panel position resources (Mar 1999) X resources

The available logical fonts are specified by the fonts X resource. For
example:
Uniface*fonts: efont, lfont, label, gfp

C.3 Panel position resources
The following UNIFACE application resources are available to control
the position of the application pop-up panel on the application screen or
a form component:

C.3.1 uappanelon

If a panel has been defined for an application in the Start-up Shell
Properties form, the uappanelon resource can be used to control the
display of the panel. Allowed values are True and False. For example:
Uniface*uappanelon: False

C.3.2 uappanelposition

If the position of a panel has not been defined in the Define Start-up Shell
Properties form, the uappanelposition resource allows you to set its
position at run time. Allowed values are Top, Bottom, Left, and Right.
For example:
Uniface*uappanelposition: Top

C.3.3 uformpanelon

If a panel has been defined for a form component, the uformpanelon
resource can be used to define whether the panel is to be displayed.
Allowed values are True and False. For example:
Uniface*uformpanelon: True

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) C.3.4 uformpanelposition C-9

C.3.4 uformpanelposition

If the position of a form component has not been defined in the Define
Form Component Properties form, the uformpanelposition resource
allows you to set its position at run time. Allowed values are Top, Bottom,
Left, and Right. For example:
Uniface*uformpanelposition: Top

C.4 Color resources
UNIFACE allows you to set the color values for the following types of
data display:

• Normal
• Blinking
• Highlighted
• Blinking and highlighted

Note: Most graphical displays do not support blinking characters.

There are four color palettes that can be used with a UNIFACE
application. All the colors in all the palettes can be defined via the setting
of various X resources.

Normal color definitions

The normal colors are set by the resources foreground_0 through
foreground_7 , and background_0 through background_7 . For
example:
Uniface*foreground_0:black
Uniface*background_0:white

Highlight color definitions

The colors used for fields containing highlighted information are set by
the resources foreground_0h through foreground_7h , and
background_0h through background_7h . For example:
Uniface*foreground_0h:red
Uniface*background_0h:white

i

UNIFACE V7.2

C-10 C.4.1 colorscheme (Mar 1999) X resources

Blinking color definitions

The colors used for fields containing blinking information are set by the
resources foreground_0b through foreground_7b , and
background_0b through background_7b . For example:
Uniface*foreground_0b:pink
Uniface*background_0b:white

Most graphical displays do not actually support characters blinking.

Highlighted blinking color definitions

The colors used for fields containing highlighted blinking information are
set by the resources foreground_0hb through foreground_7hb , and
background_0hb through background_7hb . For example:
Uniface*foreground_0hb:green
Uniface*background_0hb:white

C.4.1 colorscheme

If you do not explicitly define the background color of a widget, it is taken
from its parent. You can change this behavior with the use of the
colorscheme resource. If this resource is not set, or is set to
InheritFromParent , widgets continue to take their background color
from their parents. If you set the colorscheme resource to
UserSpecified , the color is set using the background resource.

For example, the following definition would set the default background
color for all edit boxes that have explicit color setting to white:
Uniface*ueditbox.colorscheme: UserSpecified
Uniface*ueditbox.background: white

C.4.2 CDE color compliance

If you intend to use Common Desktop Environment (CDE) to control the
display of UNIFACE applications, it is recommended that you set all
color combinations in your UNIFACE applications to the system default.
This is the color combination that is used when you set the foreground
color and the background color to the same color, for example, if you
specify that background color is 0, and foreground color is 0.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) C.5 Menu resources C-11

You can use the StyleManager utility within CDE to specify control and
font settings. For more information on how to control the appearance of
applications under CDE, refer to your CDE documentation.

C.5 Menu resources
This section describes the resources that can be used to customize the
menus used by the OSF/Motif version of UNIFACE.

C.5.1 accelerator and acceleratorText

The OSF/Motif version of UNIFACE uses X resources to define the logical
to physical mapping for menu bar accelerators. For each menu bar item,
both the accelerator keys and the accelerator text can be specified. Each
menu item uses the accelerator defined for it in the Define Window
Properties form. This is combined with the instance name for menu
items.

To specify the accelerator keys and accelerator text for the menu items
defined as, for example, File–>Open, the following definitions would be
used:
Uniface*pulldownmenu.fileopen.accelerator: Ctrl<Key>O
Uniface*pulldownmenu.fileopen.acceleratorText: Ctrl + O

The accelerator setting specifies the keystroke sequence (specified in
the standard Motif way). The acceleratorText setting specifies the
text that will appear on the menu item showing the accelerator keys.

C.5.2 menubar

The menubar resource specifies the attributes of the (horizontal) menu
bar. For example, to specify that the menu bar items should appear with
red text on a white background, the following definitions would be made:
Uniface*menubar*foreground: red
Uniface*menubar*background: white

UNIFACE V7.2

C-12 C.5.3 menuoption (Mar 1999) X resources

C.5.3 menuoption

The menuoption resource specifies the attributes of options in the menu
bar. You can specify attributes for all instances of menu bar items, or
specific named instances of them.

For example, to specify that the Edit option should appear with blue text
on a yellow background, the following definitions would be made:
Uniface*edit.foreground: blue
Uniface*edit.background: yellow

To set the backgrounds for all the other menu bar items to black, and the
foregrounds to white, the following definitions would be made:
Uniface*menuoption*foreground: white
Uniface*menuoption*background: black

C.5.4 menuoptionseparator

The menuoptionseparator resource specifies the attributes of the
pull-down menu’s separator. For example, to specify that the pull-down
menu’s separator should be painted three pixels wide, the following
definitions would be made:
Uniface*menuoptionseperator.shadowThickness: 3

The separators used by UNIFACE are derived from the XmSeparator
widget. Consequently, all the resources supported by this widget can be
used with this resource.

C.5.5 pulldownmenu

The pulldownmenu resource specfies the attributes of all pull-down
menu items. You can use this to set resources for all pull-down menus, or
for specific items using the resources described in the following sections.

For example, to make all pull-down menus appear with a white
background, you would use the following definition:
Uniface*pulldownmenu*background: white

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) C.5.6 pulldownmenuoption C-13

C.5.6 pulldownmenuoption

The pulldownmenuoption resource specifies the attributes of
individual items on a pull-down menu. For example, to specify that all
Close items should appear with red text, the following definition would
be made:
Uniface*pulldownmenu.close.foreground:red

The example shows how the foreground color of an instance of the
pulldownmenuoption class (in this case Close) is set.

C.6 IME resources
The following sections describe the resources used to control the
operation of the Input Method Editor (IME).

C.6.1 uimopen

The uimopen resource controls whether the host Input Method Editor
(IME) is automatically enabled when focus on a form component is given
to a special string (that is, one that supports double-byte characters). The
default is False.

For example:
Uniface*uimopen: True

C.6.2 uimgold

The uimgold resource controls whether the host IME is disabled when
the GOLD key is used. When the complete GOLD key sequence has been
entered, the IME is returned to its previous state. Setting uimgold to
True disables the IME when the GOLD key is used. The default is True.

For example:
Uniface*uimgold: True

UNIFACE V7.2

C-14 C.6.3 uimclose (Mar 1999) X resources

C.6.3 uimclose

The uimclose resource controls whether the host IME is disabled when
focus changes to a field that only allows input in font0. Setting uimclose
to True disables the IME when the focus changes to a field that only
allows input in Font 0.

For example:
Uniface*uimclose: False

C.6.4 uimstyle

The uimstyle resource controls the style support for the native IME.
The styles are defined by the X library and are as follows:

• XIMPreeditArea (1)
The client provides geometry management of an area in which the
native IME can perform over-the-spot editing.

• XIMPreeditCallbacks (2)
The client provides pre-edit callback procedures so that the native
IME can cooperate with the application to perform on-the-spot
pre-editing.

• XIMPreeditPosition (3)
The client provides the location of the insertion cursor so that the
native IME can perform over-the-spot pre-editing.

Table C-2 Default uimstyle setting for different platforms.

Platform IME Setting

HPUX10 XJIM 3

HPUX10 ATOK8 7

HPUX10 VJE_gama 7

HPUX10 ECNBridge 2

IBM 4.1.4 aixims 0

Solaris 2.5 htt 1

AlphaOSF dxjim 1

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) C.7 Miscellaneous resources C-15

C.7 Miscellaneous resources
The following sections describe miscellaneous resources that can be set
for the OSF/Motif version of UNIFACE.

C.7.1 MessageDialog

The MessageDialog resource specifies the attributes of all message
boxes displayed as a result of the askmess Proc statement. For example,
to make all message boxes appear with a red background, the following
setting would be used:
! make all message boxes appear with a red background
Uniface*MessageDialog.background: red

The message boxes used by UNIFACE are derived from the
XmMessageBox OSF/Motif widget. Consequently, all the resources
supported by this widget can be used with this resource.

C.7.2 profile

The profile resource specifies the prefix character used when
displaying profile characters in widgets (but not unifields). For example,
to use the %character (ASCII character 37), the following setting would
be used:
! Use the % character to denote a profile
Uniface*profile: 37

C.7.3 ufileshell

The ufileshell resource specifies the attributes of all file selection
boxes displayed as a result of the filebox Proc statement. For example,
to make the file selection box appear with a blue background, the
following setting would be used:
! make all message boxes appear with a blue background
Uniface*ufileshell.background: blue

UNIFACE V7.2

C-16 C.7.4 uvextra (Mar 1999) X resources

The file selection boxes used by UNIFACE are derived from the
XmFileSelectionBox OSF/Motif widget. Consequently, all the
resources supported by this widget can be used with this resource.

C.7.4 uvextra

The uvextra resource sets the additional space, in pixels, that is left
clear between lines on a form component. The effect of this is to increase
the height of the form component. For example:
! Add two pixels to the character cell height
Uniface*uvextra: 2

C.7.5 image_cache

The image_cache setting specifies whether images are retained in a
cache after the form components that used them have been closed. If set
to False, an image is dropped from memory after the form component
that used it is closed. This setting is useful when running applications in
low memory situations. The default is True. For example:
Uniface*image_cache: False

C.7.6 imagefile_path

The image_path resource specifies the directory where UNIFACE looks
for its image files. If you do not specify a setting, the $usys setting is
used. You can specify multiple paths to search by separating each path
with a semicolon (;) character. For example:
! Search Tom's and Fred's home directories for images
uniface*imagefile_path:/home/user/tom;/home/user/fred/

C.7.7 Mwm*title*fontlist

The Mwm*title*fontlist resource specifies the font to be used for the
window title in the Window Manager.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) C.7.8 ToggleVisual C-17

The Uniface*title*fontlist X resource specifies the font to be used
for the window title, independent of the window manager. The font
specified in this resource should be the same as the font specified for the
OSF/Motif windows manager Mwm*title*fontlist resource, if the
OSF/Motif windows manager is used.
! Change the font in all UNIFACE applications in the user environment:
Mwm*Uniface*title*fontlist:-adobe-courier-bold-i-normal--0-0-0-0-m-0-iso8859-1

! Change the font in the application called mission_critical_uappl:
Mwm*mission_critical_uappl*title*fontList:adobe-courier-bold-i-normal--0-0-0-0-m
-0-iso8859-1

Restart your OSF/Motif window manager (mwm) for your font change to
take effect. For any other window manager, replace the application class
Mwmby the class resource of your host window manager.

The Mwm*title*fontlist resource specifies the font to be used for the
window title in the window manager. For example:
! Render the title on the title area
Mwm*Uniface*title*fontList:-adobe-helvetica-bold-r-normal--14--*-*iso8859-1

C.7.8 ToggleVisual

The ToggleVisual resource specifies the visual marker used within the
check box widget.

If the check box’s field value is True, the NoToggleVisual resource can
have the following values:

• NoToggleVisual - No check or mark (default).
• ToggleVisualMark - A mark bitmap is displayed in the check box.
• ToggleVisualCross - A cross bitmap is displayed in the check box.

For example:
uniface*ucheckbox.ToggleVisual:ToggleVisualMark

C.7.9 use_icons_in_control_panel

The use_icons_in_control_panel resource controls whether text,
rather than icons, appears on a command button in a control panel. When
set to False, all command buttons in control panels appear with text,
rather than icons. The default is True.

UNIFACE V7.2

C-18 C.7.10 old_key_behavior (Mar 1999) X resources

For example:
Uniface*use_icons_in_control_panel: False

C.7.10 old_key_behavior

The old_key_behavior resource controls whether the keyboard
translation table uses new or old functionality. This new functionality
allows key combinations, such as Control+A and Control+Alt+C, to be
sent to the keyboard translation table. The old_key_behavior resource
exists for compatibility reasons. When set to False, the new functionality
is used. The default is True.

For example:
Uniface*old_key_behavior: False

C.8 Printing support
Full printing support is provided for UNIFACE on OSF/Motif. Font and
color mappings are specified in the psdef.txt file located in the USYS
directory of the installation directory.

The file is divided into sections that specify the font mappings, color
mappings, and paper size to be used during printing. The logical font and
color identifiers are the same as those used in the xdefault.txt file.
The red, green, and blue color values are floating values from 0.00
through 1.00.

The psdef.txt file has the following default contents:
[FONTS]
xfont0: Courier 9
xfont0b: Courier-Bold 9
xfont0i: Courier-Oblique 9
xfont0bi: Courier-BoldOblique 9
efont: Helvetica 9
efontb: Helvetica-Bold 9
efonti: Helvetica-Oblique 9
efontbi: Helvetica-BoldOblique 9
lfont: Helvetica 9
lfontb: Helvetica-Bold 9
lfonti: Helvetica-Oblique 9
lfontbi: Helvetica-BoldOblique 9
label: Helvetica 12

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) C.8 Printing support C-19

buttonfont: Helvetica 12

[FOREGROUND]
color_0: 0.00 0.00 0.00 black
color_1: 0.00 0.00 1.00 blue
color_2: 0.00 1.00 0.00 green
color_3: 0.00 1.00 1.00 cyan
color_4: 1.00 0.00 0.00 red
color_5: 1.00 0.00 1.00 magenta
color_6: 1.00 1.00 0.00 yellow
color_7: 0.00 0.00 0.00 black

color_0h: 0.66 0.66 0.66 dark grey
color_1h: 0.00 0.00 0.55 dark blue
color_2h: 0.00 0.39 0.00 dark green
color_3h: 0.33 0.34 0.18 dark green olive
color_4h: 0.42 0.22 0.22 indian red
color_5h: 0.55 0.12 0.55 dark orchid
color_6h: 0.68 1.00 0.18 green yellow
color_7h: 0.66 0.66 0.66 dark grey

color_0b: 1.00 1.00 1.00 white
color_1b: 0.49 0.49 0.49 grey
color_2b: 0.00 1.00 0.00 green
color_3b: 0.00 1.00 1.00 cyan
color_4b: 1.00 0.00 0.00 red
color_5b: 1.00 0.00 1.00 magenta
color_6b: 1.00 1.00 0.00 yellow
color_7b: 1.00 1.00 1.00 white

color_0hb: 0.66 0.66 0.66 light grey
color_1hb: 0.69 0.89 1.00 light blue
color_2hb: 0.45 0.87 0.47 pale green
color_3hb: 0.91 0.59 0.48 salmon
color_4hb: 1.00 0.53 0.00 orange
color_5hb: 1.00 0.71 0.77 pink
color_6hb: 0.20 0.85 0.22 yellow green
color_7hb: 0.74 0.56 0.56 rosy brown

[BACKGROUND]
color_0: 1.00 1.00 1.00 white
color_1: 0.00 0.00 1.00 blue
color_2: 0.00 1.00 0.00 green
color_3: 0.00 1.00 1.00 cyan
color_4: 1.00 0.00 0.00 red
color_5: 1.00 0.00 1.00 magenta
color_6: 1.00 1.00 0.00 yellow
color_7: 1.00 1.00 1.00 white

color_0h: 0.49 0.49 0.49 grey
color_1h: 0.00 0.00 1.00 blue

UNIFACE V7.2

C-20 C.8 Printing support (Mar 1999) X resources

color_2h: 0.00 1.00 0.00 green
color_3h: 0.00 1.00 1.00 cyan
color_4h: 0.42 0.22 0.22 indian red
color_5h: 1.00 1.00 1.00 red
color_6h: 1.00 1.00 0.00 yellow
color_7h: 1.00 1.00 1.00 white

color_0b: 0.00 0.00 1.00 blue
color_1b: 0.00 0.00 1.00 blue
color_2b: 0.00 0.00 1.00 blue
color_3b: 0.00 0.00 1.00 blue
color_4b: 0.00 0.00 1.00 blue
color_5b: 0.00 0.00 1.00 blue
color_6b: 0.00 0.00 1.00 blue
color_7b: 0.00 0.00 0.00 blue

color_0hb: 0.00 1.00 1.00 cyan
color_1hb: 0.00 1.00 1.00 cyan
color_2hb: 0.00 1.00 1.00 cyan
color_3hb: 0.00 1.00 1.00 cyan
color_4hb: 0.00 1.00 1.00 cyan
color_5hb: 0.00 1.00 1.00 cyan
color_6hb: 0.00 1.00 1.00 cyan
color_7hb: 0.00 1.00 1.00 cyan

[PAPERS]
A4: 210.0 297.0

For more information on printing support, refer to section 6.7 Enhanced
printing device translation tables in the UNIFACE Reference Manual.

UNIFACE Configuration Guide (Mar 1999) D-1

Appendix

UNIFACE V7.2

D Compatibility codes
Table D-1 presents a list of the three-letter compatibility codes used to
indicate a supported platform in UNIFACE 7.2. For a complete list of
supported platforms, you should consult your UNIFACE representative.

Table D-1 Compatibility codes. part 1 of 2

CCODE Description

A71 DIGITAL Alpha OpenVMS 7.1

AN2 Microsoft Windows NT 4.0 Alpha

AS1 AS/400e, OS/400 V4R1,V4R2,V4R3

DU1 DIGITAL UNIX 4.0

DG3 Data General AViiON Intel, DG/UX 4.20 (ACO)

IB4 IBM OS/2 4.0

HP8 HP9000, HP-UX 10.20/11

MAC Apple Macintosh 8 (Power Mac only)

MPE HP3000, MPE/ix 5.5

MS1 Microsoft Windows 95

MSW Microsoft Windows 3.11

MVS MVS (OS/390)

NC9 NCR 3000/4000/5000 UNIX MP-RAS 3.02

NT4 Microsoft Windows NT 4.0 Intel

RS4 RS/6000, AIX 4.2.1/4.3

RU1 SNI, RM Series, Reliant Unix 5.43/5.44

SC6 SCO OpenServer 3.2 v5.0.x

SG5 Silicon Graphics, IRIX 6.5 (32 bits)

UNIFACE V7.2

D-2 (Mar 1999) Compatibility codes

SO5 Sun SPARC Solaris 2.5.1/2.6

SQ7 Sequent Dynix PTX 4.4

UW3 UnixWare 7

V71 DIGITAL VAX OpenVMS 7.1

Table D-1 Compatibility codes. part 2 of 2

CCODE Description

UNIFACE Configuration Guide (Mar 1999) E-1

Appendix

UNIFACE V7.2

E Security driver
UNIFACE provides a security driver that enables developers to provide
their own 3GL implementation to encode and decode user names and
passwords when connecting to server on the synchronous path.
Currently, only the TCP driver supports the use of the security driver,
which is available for the following platforms:

• Microsoft Windows 95/NT
• Alpha NT
• Microsoft Windows 3.11
• UNIX
• OpenVMS

By default, the logon information message contains the username and
password for the remote login and is not encoded. You can define your
own 3GL to encode and decode this message.

This document describes how to create and install your own security
driver.

E.1 Implementing a custom security driver
To implement a customized security driver:

1. Obtain the security driver sources. See section E.2 Obtaining the
security driver sources.

2. Create your own security driver by modifying the sources to provide
encryption and decryption. See section E.3 Creating a custom security
driver.

3. Install and link your security driver. See section E.3 Creating a
custom security driver.

UNIFACE V7.2

E-2 E.2 Obtaining the security driver sources (Mar 1999) Security driver

For information on the security driver structure and the interface, see
section E.4 Security driver structure and section E.4.1 Security driver
entry point and functionality.

The following restrictions apply to the security driver:

• It only encrypts and decrypts the username and password. It is
expected that more functionality will be added in the future.

• It only works when using a TCP/IP network connection.
• It is only implemented on Microsoft Windows, UNIX (including

MPE/iX), and OpenVMS platforms.
• It is implemented for synchronous network access, so PolyServer and

the synchronous Application Server support the driver. The
asynchronous Application Server scrambles passwords by default.

• No encryption/decryption algorithms are provide. You must write
your own code, or provide a hook into existing encryption software.

• The interface is based on the C language. You can only code the
security driver in C or C++. However, from within the C code you can
call code written in other languages, as long as you are aware of the
calling conventions.

E.2 Obtaining the security driver sources
The default driver is always installed on supported platforms. The source
files for the driver are automatically provided on UNIX and OpenVMS.
On Microsoft Windows, the source files are provided only if you have used
the Custom Installation dialog box during installation to select 3GL
Interface and Security Driver Sources.

E.2.1 Obtaining sources on Microsoft Windows platforms

To obtain the security driver on Windows platforms:

1. Start the installation program, as described in the Microsoft Windows
Installation Guide.

2. In the first dialog box, click Custom to display the Custom Install
dialog box.

3. Select Security Driver Sources and 3GL Interface, as shown in
figure 11-1.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) E.2.1 Obtaining sources on Microsoft Windows platforms E-3

Figure 11-1 Custom Install dialog box.

4. Proceed with the installation, as described in the UNIFACE Microsoft
Windows Installation Guide.

Security driver files

After installation, the following source files are located in the /bin
subdirectory of the UNIFACE installation directory:

• Dynamic Link Library (DLL) containing the security driver. The
name of the file depends on the platform:

• Microsoft Windows 95 and NT 4: zsecintc.dll
• Windows 3.11: zsecint.dll
• Alpha NT: zsecintx.dll

UNIFACE V7.2

E-4 E.2.2 Obtaining sources on UNIX and OpenVMS platforms (Mar 1999) Security driver

• zsecint.c , an example source file.
• usecdef.h , the header file for the example source file.

Although you will eventually replace the DLL with your own
implementation, save the original file so that you can easily restore the
default implementation without reinstalling the whole product.

The DLL is automatically added to the Demand Load line in the
[UNIFACE_DLLS] section of the .ini file.

In addition to the security driver source files, several 3GL files can be
used when implementing the security driver. These files are located in
the \3gl subdirectory of the UNIFACE installation directory:

• \include\umsw3gl.h , a header file included with the 3GL Interface
that includes a macro required for the security driver.

• \samples\makefile.inc , a basic makefile suitable for your
Windows version and platform that should be included the makefile
for your own security driver.

E.2.2 Obtaining sources on UNIX and OpenVMS platforms

On UNIX and OpenVMS, the security driver is a module in the UNIS
library. The security driver source files are automatically provided in the
/bin subdirectory of the UNIFACE installation directory.

To obtain the driver, extract the module ZSECINT and save it. This
enables you to restore the default implementation without reinstalling
the whole product again.

Security driver files

On OpenVMS platforms, the following sources are provided:

• zsecint.obj , object module in the library libunis.olb

• zsecint.c , an example source file.
• usecdef.h , the header file for the example source file.

On UNIX platforms, the following sources are provided:

• zsecint.o , object module in the library libunis.a

• zsecint.c , an example source file.
• usecdef.h , the header file for the example source file.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) E.3 Creating a custom security driver E-5

E.3 Creating a custom security driver
The provided security driver example, zsecint.c , contains an example
of a driver that encodes the synchronous server request message. To
activate this functionality, compile the file with the macro TEST_ENCODE
to encode connection protocol requests.

Use the security driver structure and entry point function described in
the next section to customize the source. When you create your own
security driver implementation, you must replace the provided DLL or
object files with the new implementation.

The security driver can only be used for applications that are deployed on
supported platforms: Microsoft Windows 95, Microsoft Windows 3.11,
Microsoft Windows NT 4, Alpha NT, UNIX, and OpenVMS. All paths in
the deployed application must be updated to use the features of the
security driver.

E.3.1 Implementing on Microsoft Windows platforms

To implement the security driver on Microsoft Windows platforms:

1. Modify the provided source file or create your own. For information on
the structure and entry point function, see section E.4 Security driver
structure and section E.4.1 Security driver entry point and
functionality.

i
Note: Remember to save the original ZSECINT.DLL so that the default
implementation can be easily restored without reinstalling the whole
product.

2. Include the umsw3gl.h , which defines the XEXPORT() macro that
specifies the calling convention.

3. Include makefile.inc in your own makefile.
4. Compile the source file into a DLL using a supported C compiler.
5. Edit the Demand Load list in usys.ini and psys.ini to remove the

name of the default security driver and specify your own driver name.

Examples

The following example makefile for Windows NT or Windows 95 builds
the source security.c into a DLL called security.dll :

UNIFACE V7.2

E-6 E.3.1 Implementing on Microsoft Windows platforms (Mar 1999) Security driver

LOC = 'define the location of your driver sources'

define the location of the 3GL Interface
U3GL = $(INSTALL_DIR)\win4\3gl

include the supplied 3GL Interface makefile
!include $(U3GL)\samples\makefile.inc

define the default target
default: $(LOC)\security.dll

assume the security driver include file is also in $(LOC)
$(LOC)\security.obj:$(LOC)\security.c $(LOC)\usecdef.h

$(CL) -Du_msw -I$(LOC) -Fo$@ $(LOC)\security.c

$(LOC)\security.dll: $(LOC)\security.obj
$(LINK) -DLL -OUT:$@ @<<

$(LOC)\security.obj
$(LIBS)
<<NOKEEP

The following is a Windows 3.1 makefile example:
assume your sources in the current working directory

define the location of the 3GL Interface
U3GL = $(INSTALL_DIR)\ms1\3gl

include the 3GL the supplied 3GL Interface makefile
!include $(U3GL)\samples\makefile.inc

the target
security.dll:security.obj security.def

$(LINK) @<<
security.obj
security.dll
security.map
$(LIBS)
security.def
<<NOKEEP

$(RC) -t security.dll

The following example shows the security.def file:
LIBRARY SECURITY
DESCRIPTION' Security driver for UNIFACE SEVEN'
EXETYPE WINDOWS
CODE PRELOAD MOVEABLE
DATA PRELOAD MOVEABLE SINGLE
HEAPSIZE 1024

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) E.3.2 Implementing on UNIX and OpenVMS platforms E-7

STACKSIZE 0
EXPORTS WEP @1 RESIDENTNAME

__UCONNECT

E.3.2 Implementing on UNIX and OpenVMS platforms

To implement the security driver:

1. Modify the provided source file or create your own. For information on
the structure and entry point function, see section E.4 Security driver
structure and section E.4.1 Security driver entry point and
functionality.

2. Compile the source file into an object module using a supported C
compiler.
There are no special compilation requirements. Use your default
compiler settings to produce one or more object files that contain your
driver implementation. These object files can then be added to the
UNIS library.

3. Remove the default driver and save it elsewhere.
4. Add your own security driver. On UNIX, use the command AR to

replace the dummy objects. On OpenVMS, use the command
LIBRARY to replace the module.

5. Once your driver objects are in the UNIS library, re-run the
installation program and choose option 4, which relinks your
applications. You must do this for all UNIFACE and PolyServer
installations that participate in the new security scheme.

E.4 Security driver structure
Table E-1 lists the available members of the security driver structure.
Not all members are described, as some are reserved for UNIFACE use
only.

UNIFACE V7.2

E-8 E.4 Security driver structure (Mar 1999) Security driver

Table E-1 Security driver members.

Member Description

void *DrvArea Used to allocate memory and store the
pointer; also responsible for freeing any
memory that it allocates.

unsigned char *InBuf Points to the start of the input buffer,
which contains the information to be
encoded or decoded.

int InBufLen Length in bytes of the buffer pointed to by
InBuf

int InDataLen Length in bytes of the data stored in the
buffer pointed to by InBuf .

unsigned char *OutBuf Points to the start of the output buffer,
which contains the result of encoding or
decoding the data in the input buffer
InBuf .

int OutBufLen Length in bytes of the buffer pointed to by
OutBuf

int OutDataLen Length in bytes of the data stored in the
buffer pointed to by OutBuf .

unsigned char *ErrMsg Points to a buffer containing the error
message text that describes the supplied
error number. This buffer is guaranteed
to be at least 256 bytes long.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) E.4.1 Security driver entry point and functionality E-9

E.4.1 Security driver entry point and functionality

WINDOWS platforms

The syntax of the security entry point function for Windows is:

#include "usecdef.h"
XEXPORT(long) USECINT(USec *Sec)

where:

int ErrMsgLen Length in bytes of the error message text
in the buffer pointed to by ErrMsg

long Error Error number returned by the security
driver if it encounters an error.
It should also return a status from the
entry point function indicating the severity
of the error. This member is only viewed
when the entry point function return
status is not successful. It is this number
for which text must be supplied in the
ErrMsg buffer.

unsigned char Function This member describes the action to be
taken by the security driver. The following
actions are defined:
• USEC_INFO—Specify this

implementation’s functionality
• USEC_ENCODE—Encode the contents

of InBuf and place the result in
OutBuf

• USEC_DECODE—Decode the contents
of InBuf and place the result in
OutBuf

• USEC_ERRMSG—Translate the error
number into text

For more information on these actions,
see section E.4.3 Function codes.

Table E-1 Security driver members.

Member Description

i

UNIFACE V7.2

E-10 E.4.2 Return values (Mar 1999) Security driver

XEXPORT() is a macro provided in umsw3gl.h , a file provided with 3GL
Interface option of the installation. It specifies the calling convention. For
more information, see section E.3 Creating a custom security driver.

USECINTis the entry point function.

(USec *Sec) is a pointer to the security driver structure described in
section E.4 Security driver structure.

UNIX and OpenVMS

The syntax of the security entry point function for UNIX and OpenVMS
is:

#include "usecdef.h"
long USECINT(USec *Sec)

where:

USECINTis the entry point function

(USec *Sec) is a pointer to the security driver structure described in
section E.4 Security driver structure.

E.4.2 Return values

The function returns a long value, which must be one of the following:

• USEC_SUCCESS—Everything worked.
• USEC_ERROR—Something went wrong. The error is returned and the

user can decide what to do. The action can be retried or not,
depending on the application context.

• USEC_FATAL—Something went wrong in such a way that there is no
point in trying again. The application returns the error and then
exits. The entry point function must examine the Function member
and determine what action needs to be taken. The functionality of the
driver is expected to be expanded, so function codes that are not
recognized should be returned as errors.

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) E.4.3 Function codes E-11

E.4.3 Function codes

This section describes the function codes that can be encountered.

USEC_INFO

The caller is requesting information about the functionality of the driver.
The following macros are provided:

• USetSecConnectEnc(USec *Sec)

Use this macro to specify that this security driver implementation
encodes the synchronous server request message. After using this
macro, your security driver will receive encode and decode requests.

• UZeroSecConnectEnc(USec *Sec)

Use this macro to specify that this security driver implementation
does not encode the synchronous server request message. The default
driver implementation uses this macro.

• UIsSecConnectEnc(USec *Sec)

Use this macro to determine whether the driver encodes the
synchronous server request. The initial setting in the structure is that
no encoding will take place, so this macro returns false. If
USetSecConnectEnc() has been called, this macro returns true.
The entry point function is not allowed to return an error with this
function code.

USEC_ENCODE

The caller is requesting the data specified by InBuf and InDataLen to
be encoded. The encoded data must be placed in OutBuf and its length,
which must be less than or equal to OutBufLen , should be returned in
OutDataLen .

For a synchronous server request message, substantial enlargement of
data due to encoding is supported. The OutBuf is approximately three
times the size of the InBuf . The complete input data must be encoded
and placed in the output buffer. If the output buffer is not large enough
to hold the encoded data, modify the InDataLen member to indicate how
much of the input has been encoded. For a synchronous server request
message, this results in an error because the message must be sent in an
unsegmented form. (In the future, this same mechanism will be used to
segment large buffers that require encoding.)

UNIFACE V7.2

E-12 E.4.3 Function codes (Mar 1999) Security driver

USEC_DECODE

The caller is requesting the data specified by InBuf and InDataLen to
be decoded. The decoded data must be placed in OutBuf and its length,
which must be less than or equal to OutBufLen , should be returned in
OutDataLen . If the output buffer is not large enough to hold the decoded
data, modify the InDataLen member to indicate how much of the input
buffer has been decoded.

USEC_ERRMSG

The driver must provide an error message that describes the error
identified by the Error member of the driver structure. The textual
message should not exceed 256 bytes in length and its length should be
returned in ErrMsgLen .

Although the message format is entirely implementation-specific, the
macro USEC_ERR_HEADERis provided. This macro defines the
null-terminated string, "Security Driver Error [%d] : %s" . It is
a format string that can be given to functions like printf() . It requires
the error number and the error message as arguments.

UNIFACE Configuration Guide (Mar 1999) Index-1

UNIFACE V7.2

Index

Symbols
{} (syntax description) x
| (syntax description) x

Numerics
3GL services

remote execution 2-4

A
accelerator C-11
[ACCELERATORS] B-1
acceleratorText C-11
ADJUST mouse button x
[APPLICATION] B-2
application processes

network 1-6
starting 1-6

Application Server 2-1, 2-4
chaining 2-5

applications
context maintained over network 1-13
networked 1-3
partioning 2-2
stand-alone 1-2

assignment files
global, for Application Server 4-28, 4-29
global, for PolyServer

See psys.asn
local, for Application Server 4-28
local, for Name Server 4-36
local, for PolyServer

See psv.asn
PolyServer 1-9
specifying drivers 1-1, 1-4

assignment settings
$NET 1-11
$REMOTE_path 1-11

assignments
path-to-driver 4-25
syntax for component-to-server 4-26
syntax for path-to-driver 4-26
to network drivers 4-3
user-defined paths 4-3

asynchronous communication 2-2
limitations 2-3

AUTOIMECLOSE B-17
AUTOIMEGOLD B-17
AUTOIMEOPEN B-17
AUTOMAXIMIZE B-17

UNIFACE V7.2

Index-2 (Mar 1999)

B
[BACKGROUND] B-3
background C-9
BOLD B-17
BUTTONSPACING B-18
BUTTONSTYLE B-18
BUTTONTYPE B-18

C
CELLHEIGHT B-18
chaining Application Servers 2-5
chaining PolyServers 4-15
CHARSETS B-14
client messaging 3-1
client/server architecture 1-3
COLORINVERSE B-18
COLORNORMAL B-18
colorscheme C-10
commit

distributed processing 1-4
Component Server 2-4
configuration

EcoTOOLS 5-1
control blocks 1-13
conventions

key strokes ix
mouse actions x
syntax description x

CSETACCELERATOR B-14

D
data

integrity 1-13
protection 1-12

data access
local 1-2
remote 1-3

data integrity
physical 1-6
referential 1-5

[DB3] B-4
DBMSs

accessing multiple 1-3
distributed databases 1-5
driver requests across networks 1-21

DDE B-15
DEBUGLINES B-19
DEFAULT B-6
DEMANDLOAD B-16, B-23
distributed

databases 1-5
processing 1-5

[DNT] B-4
documentation

related ix
drivers

DBMS requests via network 1-21
network 1-4
security E-1

E
EcoTOOLS 5-1
entities

status 1-13
error handling

networks 1-12
errors

chained PolyServers 1-18
network 1-11
testing for network errors 1-16
types 1-13
unknown 1-14

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) Index-3

ETC B-13

F
FILTER B-5
FMTFORMPANELS B-19
FMTSESSIONPANEL B-19
FOCUSFLASH B-19
FONTLIST B-14
[FOREGROUND] B-3
foreground C-9
FRAMEALIGN B-19
FRAMETYPE B-19
function codes

security driver E-11

G
[GFP] B-4
GFPPALETTE B-11
GFPSTATUS B-11
[GRAPHIC FILTERS] B-5

H
[HELP] B-5
HELPDIR B-8
[HISTORY] B-6

I
ICON B-2
image_cache C-16
imagefile_path C-16
IMAGES B-9
.ini files B-1
[INSTALL] B-6

installation directory
See PSYS (installation directory)
See USYS (installation directory)

ITALIC B-19

K
key strokes

conventions ix
KEYPADENTERACCESS B-20

L
LINESPACE B-20
Link needed here to URB stuff 4-37
LOGO16 B-2
LOGO2 B-2
LOGO256 B-2
LOGOTIME B-3

M
maintenance

chained PolyServers 1-10
MAXREC B-4, B-13
MDICONTROLS B-15
MENU mouse button x
menubar C-11
menuoption C-12
menuoptionseparator C-12
MENUTOGGLE B-15
Message Daemon 2-3
message frame 4-25
MessageDialog C-15
MESSAGES B-6

UNIFACE V7.2

Index-4 (Mar 1999)

messaging
broadcasting 3-3
client instances 3-2
peer instances 3-2
requirements 3-3

MINIRESOURCE B-20
Monitor 2-4
mouse actions

conventions x
drag x
press x
select x

MSGLINES B-20
Mwm*title*fontlist C-16

N
NAME B-23
Name Server 2-4
/net (switch in Proc) 4-13
networks

contents of network package 1-21
data transport 1-21
driver functions 1-21
drivers 1-1, 1-4
errors 1-11, 1-12
errors, testing for in Proc 1-16
opening a network path explicitly 4-13
protocols 1-8
referential integrity 1-5
testing for errors in Proc 1-16

NEWFORM B-4
NLS B-16

O
[OCX] B-7
OCXTRACE B-7
old_key_behavior C-18

Open Systems Interconnection
See OSI

OS services
remote execution 2-4

OSI 7-layer reference model 1-19

P
PAINTCACHE B-20
PANEL B-11
PANELMIN B-12
PANELPOS B-12
PANELSIZE B-12
PANELTOOLTIP B-20
PANELTYPE B-20
PASSWORD B-23
PATH B-16, B-23
[PATHS] B-8
path-to-driver assignments

See assignments
peer-to-peer messaging 3-1
performance

chaining PolyServers 1-11
network I/O 1-20

PolyServer 1-1, 1-7
accessing multiple instances 1-8
assignment files 4-5
chaining 1-8, 1-10, 4-15
commit 1-4
distributed databases 1-5
distributed processing 1-5
drivers used 1-4
errors 1-16, 1-18
multiple processes 1-6
network drivers 1-4
OSI 7-layer model 1-19
referential integrity 1-5
rollback 1-4
SuperServer 1-8

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) Index-5

Polyserver
processes 1-7

POPUPDELAY B-21
PRELOAD B-16, B-24
[PRINTER] B-9
Proc language

postmessage 3-1
processes

multiple PolyServer 1-6
networking 1-6
Polyserver 1-7
starting 1-6, 1-8
SuperServer 1-8

PROFILE B-21
profile C-15
PROJECT B-6
psv.asn 1-9, 4-5, 4-8, 4-10, 4-11, 4-12, 4-15
PSYS (installation directory) 4-5, 4-8
psys.asn 1-9, 4-5, 4-8
pulldowndownmenuoption C-13
pulldownmenu C-12

R
referential integrity constraints

logical 1-5
networks 1-5
physical 1-6

$REMOTE_path 4-9, 4-10
[REPORTS_EXEC] in assignment files 4-26
requirements

messaging 3-3
return values

security driver E-10
rollback

distributed processing 1-4
ROOT B-7

S
$S3C default path 4-28
[SCREEN] B-9
SCROLLBARS B-21
security

chained PolyServers 1-11
security driver

customizing E-5
defined E-1
function codes E-11
implementing E-1
interface E-7
restrictions E-2
return values E-10
source files E-2
structure E-7
UNIX implementation E-7
VMS implementation E-7
Windows implementation E-5

SELECT mouse button x
[SERVICES_EXEC] in assignment files 4-26
[SINGLE_INSTANCE] B-11
SOCKETS B-13
$SOS default path 4-28
SOUND B-21
[STATE] B-11
$status

network errors 1-16
statuswindow C-7
STYLEBUTTONS B-15
SuperServer 1-8
synchronous communication 2-2
syntax

conventions for description x
path-to-driver assignments 4-26

UNIFACE V7.2

Index-6 (Mar 1999)

T
[TCP] B-13
TCPSTRIPPEDDOMAINRETRY B-13
TEXTFRAME B-21
TIMEOUT B-13, B-15
ToggleVisual C-17
[TOOLBAR] B-14
TRANSLINES B-22

U
uappanelon C-8

X resources C-8
uappanelposition C-8
[UDDE] B-15
udebugbox C-5
uextra C-16
ufileselectionbox C-5
ufileshell C-15
uformpanelon C-8
uformpanelposition C-9
uimclose C-14
uimgold C-13
uimopen C-13
uimstyle C-14
umsgdialog C-6
UNDERLINE B-22
UNIFACE

networking and OSI 7-layer model 1-19
UNIFACE Run Time Library

See URTL
[UNIFACE_DLLS] B-16
upanelbutton C-6
[UPI] B-17
UPSVINACTIVETCP B-13

uradiodialog C-7
URTL 1-3
use_icons_in_control_panel C-17
[USER] B-23
[USERDLLS] B-23
USYS

.ini file setting B-9

V
VERSION B-7
VIEWTOGGLE B-15

W
[WIDGETS] B-24
WIDGETS B-4
WINDOWMAX B-12
WINDOWPOS B-12
WINDOWSIZE B-12
WORKDIR B-9

UNIFACE V7.2

UNIFACE Configuration Guide (Mar 1999) Index-7

X
X resources

accelerator C-11
acceleratorText C-11
background C-9
colorscheme C-10
foreground C-9
image_cache C-16
imagefile_path C-16
menubar C-11
menuoption C-12
menuoptionseparator C-12
MessageDialog C-15
Mwm*title*fontlist C-16
old_key_behavior C-18
profile C-15
pulldownmenu C-12
pulldownmenuoption C-13
statuswindow C-7
ToggleVisual C-17
uappanelposition C-8
udebugbox C-5
ufileselectionbox C-5
ufileshell C-15
uformpanelon C-8
uformpanelposition C-9
uimclose C-14
uimgold C-13
uimopen C-13
uimstyle C-14
umsgdialog C-6
upanelbutton C-6
uradiodialog C-7
use_icons_in_control_panel C-17
uvextra C-16

UNIFACE V7.2

Index-8 (Mar 1999)

	Title
	Contents
	Preface
	1 PolyServer
	1.1 Introduction to PolyServer
	1.1.1 How the PolyServer works

	1.2 Distributed processing versus distributed databases
	1.2.1 Logical referential integrity
	1.2.2 Physical referential integrity

	1.3 Networking processes
	1.3.1 Which processes get started
	1.3.2 What a PolyServer process does

	1.4 Chaining PolyServers
	1.4.1 Why chain PolyServers?
	1.4.2 Disadvantages of chaining PolyServers

	1.5 Network errors
	1.5.1 Principles of error handling
	1.5.2 Types of error
	1.5.3 Testing for network errors in Proc code
	1.5.4 PolyServer reaction to network errors
	1.5.5 UNIFACE reaction to network errors
	1.5.6 Chained PolyServers and network errors

	1.6 Further information
	1.6.1 PolyServer communication
	1.6.2 Network driver communication

	2 UNIFACE Application Servers
	2.1 Introduction
	2.2 Synchronous and asynchronous communication
	2.3 The Message Daemon
	2.4 The UNIFACE Monitor and Name Server
	2.5 The Application Server
	2.6 The Component Server
	2.7 Chaining Application and Component Servers
	2.8 Running and verifying the servers
	2.8.1 Verify that the Message Daemon is running
	2.8.2 Start the Application Server manually
	2.8.3 Run pdmon
	2.8.4 Stop the Application Server using pdmon

	3 Client and peer-to-peer messaging
	3.1 Introduction
	3.2 Message handling for client instances
	3.3 Message handling for peer instances

	4 Assignments for a distributed environment
	4.1 Assignments with PolyServer
	4.1.1 Assignment files for the client environment
	4.1.2 Assignment files for the PolyServer environment
	4.1.3 Relationships between assignment files
	4.1.4 Using $REMOTE_path
	4.1.5 Assigning non-DBMS files on the network
	4.1.6 Opening a network path using Proc code
	4.1.7 Chaining PolyServers

	4.2 Assignments for a distributed environment
	4.2.1 Assignments on the client side
	4.2.2 Assignments on the Application Server side

	4.3 Using the UNIFACE Name Server
	4.3.1 Assignments on the client side
	4.3.2 Assignments on the Name Server side
	4.3.3 Middleware support
	4.3.4 Transaction Processing

	5 EcoTOOLS configuration
	5.1 Introduction
	5.2 Using EcoTOOLS monitoring
	5.3 Limitations

	6 Report Writer Interface (RWI) configuration
	7 Microsoft Windows configuration
	8 UNIX and MPE/iX configuration
	9 OpenVMS configuration
	10 Macintosh configuration
	11 OS/2 configuration
	A UNIFACE Server Monitor
	B Microsoft Windows initialization files
	C X resources
	D Compatibility codes
	E Security driver
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

