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Preface

This manuscript attempts to provide the reader with an insight in artificial neural networks.
Back in 1990, the absence of any state-of-the-art textbook forced us into writing our own.
However, in the meantime a number of worthwhile textbooks have been published which can
be used for background and in-depth information. We are aware of the fact that, at times, this
manuscript may prove to be too thorough or not thorough enough for a complete understanding
of the material; therefore, further reading material can be found in some excellent text books
such as (Hertz, Krogh, & Palmer, 1991; Ritter, Martinetz, & Schulten, 1990; Kohonen, 1995;
Anderson & Rosenfeld, 1988; DARPA, 1988; McClelland & Rumelhart, 1986; Rumelhart &
McClelland, 1986).

Some of the material in this book, especially parts IIT and IV, contains timely material and
thus may heavily change throughout the ages. The choice of describing robotics and vision as
neural network applications coincides with the neural network research interests of the authors.

Much of the material presented in chapter 6 has been written by Joris van Dam and Anuj Dev
at the University of Amsterdam. Also, Anuj contributed to material in chapter 9. The basis of
chapter 7 was form by a report of Gerard Schram at the University of Amsterdam. Furthermore,
we express our gratitude to those people out there in Net-Land who gave us feedback on this
manuscript, especially Michiel van der Korst and Nicolas Maudit who pointed out quite a few
of our goof-ups. We owe them many kwartjes for their help.

The seventh edition is not drastically different from the sixth one; we corrected some typing
errors, added some examples and deleted some obscure parts of the text. In the eighth edition,
symbols used in the text have been globally changed. Also, the chapter on recurrent networks
has been (albeit marginally) updated. The index still requires an update, though.

Amsterdam/Oberpfaffenhofen, November 1996
Patrick van der Smagt
Ben Krose
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]_ Introduction

A first wave of interest in neural networks (also known as ‘connectionist models’ or ‘parallel
distributed processing’) emerged after the introduction of simplified neurons by McCulloch and
Pitts in 1943 (McCulloch & Pitts, 1943). These neurons were presented as models of biological
neurons and as conceptual components for circuits that could perform computational tasks.

When Minsky and Papert published their book Perceptrons in 1969 (Minsky & Papert, 1969)
in which they showed the deficiencies of perceptron models, most neural network funding was
redirected and researchers left the field. Only a few researchers continued their efforts, most
notably Teuvo Kohonen, Stephen Grossberg, James Anderson, and Kunihiko Fukushima.

The interest in neural networks re-emerged only after some important theoretical results were
attained in the early eighties (most notably the discovery of error back-propagation), and new
hardware developments increased the processing capacities. This renewed interest is reflected
in the number of scientists, the amounts of funding, the number of large conferences, and the
number of journals associated with neural networks. Nowadays most universities have a neural
networks group, within their psychology, physics, computer science, or biology departments.

Artificial neural networks can be most adequately characterised as ‘computational models’
with particular properties such as the ability to adapt or learn, to generalise, or to cluster or
organise data, and which operation is based on parallel processing. However, many of the above-
mentioned properties can be attributed to existing (non-neural) models; the intriguing question
is to which extent the neural approach proves to be better suited for certain applications than
existing models. To date an equivocal answer to this question is not found.

Often parallels with biological systems are described. However, there is still so little known
(even at the lowest cell level) about biological systems, that the models we are using for our
artificial neural systems seem to introduce an oversimplification of the ‘biological’ models.

In this course we give an introduction to artificial neural networks. The point of view we
take is that of a computer scientist. We are not concerned with the psychological implication of
the networks, and we will at most occasionally refer to biological neural models. We consider
neural networks as an alternative computational scheme rather than anything else.

These lecture notes start with a chapter in which a number of fundamental properties are
discussed. In chapter 3 a number of ‘classical’ approaches are described, as well as the discussion
on their limitations which took place in the early sixties. Chapter 4 continues with the descrip-
tion of attempts to overcome these limitations and introduces the back-propagation learning
algorithm. Chapter 5 discusses recurrent networks; in these networks, the restraint that there
are no cycles in the network graph is removed. Self-organising networks, which require no exter-
nal teacher, are discussed in chapter 6. Then, in chapter 7 reinforcement learning is introduced.
Chapters 8 and 9 focus on applications of neural networks in the fields of robotics and image
processing respectively. The final chapters discuss implementational aspects.

13
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2 Fundamentals

The artificial neural networks which we describe in this course are all variations on the parallel
distributed processing (PDP) idea. The architecture of each network is based on very similar
building blocks which perform the processing. In this chapter we first discuss these processing
units and discuss different network topologies. Learning strategies—as a basis for an adaptive
system—will be presented in the last section.

2.1 A framework for distributed representation

An artificial network consists of a pool of simple processing units which communicate by sending
signals to each other over a large number of weighted connections.

A set of major aspects of a parallel distributed model can be distinguished (cf. Rumelhart
and McClelland, 1986 (McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986)):

e a set of processing units (‘neurons,’ ‘cells’);

a state of activation y, for every unit, which equivalent to the output of the unit;

e connections between the units. Generally each connection is defined by a weight w;; which
determines the effect which the signal of unit 7 has on unit k;

e a propagation rule, which determines the effective input s, of a unit from its external
inputs;

e an activation function Fi, which determines the new level of activation based on the
effective input s, (t) and the current activation y, (¢) (i.e., the update);

e an external input (aka bias, offset) 6}, for each unit;
e a method for information gathering (the learning rule);

e an environment within which the system must operate, providing input signals and—if
necessary—error signals.

Figure 2.1 illustrates these basics, some of which will be discussed in the next sections.

2.1.1 Processing units

Each unit performs a relatively simple job: receive input from neighbours or external sources
and use this to compute an output signal which is propagated to other units. Apart from this
processing, a second task is the adjustment of the weights. The system is inherently parallel in
the sense that many units can carry out their computations at the same time.

Within neural systems it is useful to distinguish three types of units: input units (indicated
by an index i) which receive data from outside the neural network, output units (indicated by

15
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k
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Figure 2.1: The basic components of an artificial neural network. The propagation rule used here is
the ‘standard’ weighted summation.

an index o) which send data out of the neural network, and hidden units (indicated by an index
h) whose input and output signals remain within the neural network.

During operation, units can be updated either synchronously or asynchronously. With syn-
chronous updating, all units update their activation simultaneously; with asynchronous updat-
ing, each unit has a (usually fixed) probability of updating its activation at a time ¢, and usually
only one unit will be able to do this at a time. In some cases the latter model has some
advantages.

2.1.2 Connections between units

In most cases we assume that each unit provides an additive contribution to the input of the
unit with which it is connected. The total input to unit k is simply the weighted sum of the
separate outputs from each of the connected units plus a bias or offset term 6y:

The contribution for positive wj;, is considered as an excitation and for negative w;, as inhibition.
In some cases more complex rules for combining inputs are used, in which a distinction is made
between excitatory and inhibitory inputs. We call units with a propagation rule (2.1) sigma
units.

A different propagation rule, introduced by Feldman and Ballard (Feldman & Ballard, 1982),
is known as the propagation rule for the sigma-pi unit:

)= S win(t) [[1;,(0) + 0u(0). (2.2)

Often, the y; = are weighted before multiplication. Although these units are not frequently used,
they have their value for gating of input, as well as implementation of lookup tables (Mel, 1990).

2.1.3 Activation and output rules

We also need a rule which gives the effect of the total input on the activation of the unit. We need
a function Fj, which takes the total input s,(¢) and the current activation y,(t) and produces a
new value of the activation of the unit k:

Ykt +1) = Fr(yp(t), s, (t))- (2.3)
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Often, the activation function is a nondecreasing function of the total input of the unit:

Ye(t + 1) = Fr(se(?) ijk )+ 60e() ], (2.4)

although activation functions are not restricted to nondecreasing functions. Generally, some sort
of threshold function is used: a hard limiting threshold function (a sgn function), or a linear or
semi-linear function, or a smoothly limiting threshold (see figure 2.2). For this smoothly limiting
function often a sigmoid (S-shaped) function like

1

Tre™ (2:5)

Yp = F(sp) =

is used. In some applications a hyperbolic tangent is used, yielding output values in the range

[—1,+1].

sgn semi- Ilnear SlngId

Figure 2.2: Various activation functions for a unit.

In some cases, the output of a unit can be a stochastic function of the total input of the
unit. In that case the activation is not deterministically determined by the neuron input, but
the neuron input determines the probability p that a neuron get a high activation value:

1

2.6
oo/t (2.6)

plyp < 1) =
in which T' (cf. temperature) is a parameter which determines the slope of the probability
function. This type of unit will be discussed more extensively in chapter 5.
In all networks we describe we consider the output of a neuron to be identical to its activation
level.

2.2 Network topologies

In the previous section we discussed the properties of the basic processing unit in an artificial
neural network. This section focuses on the pattern of connections between the units and the
propagation of data.

As for this pattern of connections, the main distinction we can make is between:

e Feed-forward networks, where the data flow from input to output units is strictly feed-
forward. The data processing can extend over multiple (layers of) units, but no feedback
connections are present, that is, connections extending from outputs of units to inputs of
units in the same layer or previous layers.

e Recurrent networks that do contain feedback connections. Contrary to feed-forward net-
works, the dynamical properties of the network are important. In some cases, the activa-
tion values of the units undergo a relaxation process such that the network will evolve to
a stable state in which these activations do not change anymore. In other applications,
the change of the activation values of the output neurons are significant, such that the
dynamical behaviour constitutes the output of the network (Pearlmutter, 1990).
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Classical examples of feed-forward networks are the Perceptron and Adaline, which will be
discussed in the next chapter. Examples of recurrent networks have been presented by Anderson
(Anderson, 1977), Kohonen (Kohonen, 1977), and Hopfield (Hopfield, 1982) and will be discussed
in chapter 5.

2.3 'Training of artificial neural networks

A neural network has to be configured such that the application of a set of inputs produces
(either ‘direct’ or via a relaxation process) the desired set of outputs. Various methods to set
the strengths of the connections exist. One way is to set the weights explicitly, using a priori
knowledge. Another way is to ‘train’ the neural network by feeding it teaching patterns and
letting it change its weights according to some learning rule.

2.3.1 Paradigms of learning

We can categorise the learning situations in two distinct sorts. These are:

e Supervised learning or Associative learning in which the network is trained by providing
it with input and matching output patterns. These input-output pairs can be provided by
an external teacher, or by the system which contains the network (self-supervised).

e Unsupervised learning or Self-organisation in which an (output) unit is trained to respond
to clusters of pattern within the input. In this paradigm the system is supposed to dis-
cover statistically salient features of the input population. Unlike the supervised learning
paradigm, there is no a priori set of categories into which the patterns are to be classified;
rather the system must develop its own representation of the input stimuli.

2.3.2 Modifying patterns of connectivity

Both learning paradigms discussed above result in an adjustment of the weights of the connec-
tions between units, according to some modification rule. Virtually all learning rules for models
of this type can be considered as a variant of the Hebbian learning rule suggested by Hebb in
his classic book Organization of Behaviour (1949) (Hebb, 1949). The basic idea is that if two
units 5 and k are active simultaneously, their interconnection must be strengthened. If j receives
input from k, the simplest version of Hebbian learning prescribes to modify the weight w;; with

Awjr = VY Yg, (2.7)
where 7y is a positive constant of proportionality representing the learning rate. Another common

rule uses not the actual activation of unit £ but the difference between the actual and desired
activation for adjusting the weights:

Awji, = vy;(dy, — Yp), (2.8)
in which d,, is the desired activation provided by a teacher. This is often called the Widrow-Hoff
rule or the delta rule, and will be discussed in the next chapter.

Many variants (often very exotic ones) have been published the last few years. In the next
chapters some of these update rules will be discussed.

2.4 Notation and terminology

Throughout the years researchers from different disciplines have come up with a vast number of
terms applicable in the field of neural networks. Our computer scientist point-of-view enables
us to adhere to a subset of the terminology which is less biologically inspired, yet still conflicts
arise. Our conventions are discussed below.
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2.4.1 Notation

We use the following notation in our formulae. Note that not all symbols are meaningful for all
networks, and that in some cases subscripts or superscripts may be left out (e.g., p is often not
necessary) or added (e.g., vectors can, contrariwise to the notation below, have indices) where
necessary. Vectors are indicated with a bold non-slanted font:

Js ky ... the unit 3, k, .. .;

1 an input unit;

h a hidden unit;

o an output unit;

xP the pth input pattern vector;

:c? the jth element of the pth input pattern vector;

sP the input to a set of neurons when input pattern vector p is clamped (i.e., presented to the
network); often: the input of the network by clamping input pattern vector p;

d? the desired output of the network when input pattern vector p was input to the network;

dg-’ the jth element of the desired output of the network when input pattern vector p was input
to the network;

YP the activation values of the network when input pattern vector p was input to the network;

y‘;-' the activation values of element j of the network when input pattern vector p was input to
the network;

W the matrix of connection weights;

Ww; the weights of the connections which feed into unit j;

wji, the weight of the connection from unit j to unit k;

F; the activation function associated with unit j;

v the learning rate associated with weight wj;

© the biases to the units;

0; the bias input to unit j;

U; the threshold of unit j in F;;

EP the error in the output of the network when input pattern vector p is input;

& the energy of the network.

2.4.2 Terminology

Output vs. activation of a unit. Since there is no need to do otherwise, we consider the
output and the activation value of a unit to be one and the same thing. That is, the output of
each neuron equals its activation value.
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Bias, offset, threshold. These terms all refer to a constant (i.e., independent of the network
input but adapted by the learning rule) term which is input to a unit. They may be used
interchangeably, although the latter two terms are often envisaged as a property of the activation
function. Furthermore, this external input is usually implemented (and can be written) as a
weight from a unit with activation value 1.

Number of layers. In a feed-forward network, the inputs perform no computation and their
layer is therefore not counted. Thus a network with one input layer, one hidden layer, and one
output layer is referred to as a network with two layers. This convention is widely though not
yet universally used.

Representation vs. learning. When using a neural network one has to distinguish two issues
which influence the performance of the system. The first one is the representational power of
the network, the second one is the learning algorithm.

The representational power of a neural network refers to the ability of a neural network to
represent a desired function. Because a neural network is built from a set of standard functions,
in most cases the network will only approximate the desired function, and even for an optimal
set of weights the approximation error is not zero.

The second issue is the learning algorithm. Given that there exist a set of optimal weights
in the network, is there a procedure to (iteratively) find this set of weights?



Part 11

THEORY

21






Perce tron and daline

This chapter describes single layer neural networks, including some of the classical approaches
to the neural computing and learning problem. In the first part of this chapter we discuss the
representational power of the single layer networks and their learning algorithms and will give
some examples of using the networks. In the second part we will discuss the representational
limitations of single layer networks.

Two ‘classical’ models will be described in the first part of the chapter: the Perceptron,
proposed by Rosenblatt (Rosenblatt, 1959) in the late 50’s and the Adaline, presented in the
early 60’s by by Widrow and Hoff (Widrow & Hoff, 1960).

3.1 Networks wit t res old acti ation functions

A single layer feed-forward network consists of one or more output neurons o, each of which is
connected with a weighting factor w to all of the inputs . In the simplest case the network
has only two inputs and a single output, as sketched in figure 3.1 (we leave the output index o
out). The input of the neuron is the weighted sum of the inputs plus the bias term. The output

z @ w

372.%20

+1

Y

Figure .1: ingle la er network with one output and two inputs.

of the network is formed by the activation of the output neuron, which is some function of the
input:

2
y=F Ywz +6 , (3.1)

The activation function F can be linear so that we have a linear network, or nonlinear. In this
section we consider the threshold (or Heaviside or sgn) function:

1 ifs 0

—1 otherwise.

F(s) = (3:2)

The output of the network thus is either +1 or —1, depending on the input. The network
can now be used for a classi cation task: it can decide whether an input pattern belongs to
one of two classes. If the total input is positive, the pattern will be assigned to class +1, if the

23



24 CHAPTER . PERCEPTRON AND ADALINE

total input is negative, the sample will be assigned to class —1. The separation between the two
classes in this case is a straight line, given by the equation:

wx +wyzy+60=0 (3.3)

The single layer network represents a linear discriminant function.
A geometrical representation of the linear threshold neural network is given in figure 3.2.

Equation (3.3) can be written as
w 0
Ty =——2 — —, (3.4)
w2 w9
and we see that the weights determine the slope of the line and the bias determines the ‘offset’,
i.e. how far the line is from the origin. Note that also the weights can be plotted in the input

space: the weight vector is always perpendicular to the discriminant function.

)

+
+
T+
o @) | w
+ ! +
o W9
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ya I
“p —0 T
© © w
o

Figure .2: eometric representation of the discriminant function and the weights.

Now that we have shown the representational power of the single layer network with linear
threshold units, we come to the second issue: how do we learn the weights and biases in the
network? We will describe two learning methods for these types of networks: the ‘perceptron’
learning rule and the ‘delta’ or ‘LMS’ rule. Both methods are iterative procedures that adjust
the weights. A learning sample is presented to the network. For each weight the new value is
computed by adding a correction to the old value. The threshold is updated in a same way:

w(t+1) = w(t)+ Aw (2), (3.5)
Ot +1) = 0(t) + A0(t). (3.6)

The learning problem can now be formulated as: how do we compute Aw (t) and A#(t) in order

to classify the learning patterns correctly?

3.2 erceptron learning rule and con ergence t eorem

Suppose we have a set of learning samples consisting of an input vector x and a desired output
d(x). For a classification task the d(x) is usually +1 or —1. The perceptron learning rule is very
simple and can be stated as follows:

1. Start with random weights for the connections;
2. Select an input vector x from the set of training samples;

3. If y = d(x) (the perceptron gives an incorrect response), modify all connections w accord-
ing to: Aw =d(x)z ;
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4. Go back to 2.

Note that the procedure is very similar to the Hebb rule; the only difference is that, when the
network responds correctly, no connection weights are modified. Besides modifying the weights,
we must also modify the threshold 8. This 6 is considered as a connection w between the output
neuron and a ‘dummy’ predicate unit which is always on: £ = 1. Given the perceptron learning
rule as stated above, this threshold is modified according to:

0 if the perceptron responds correctly;

Ab = d(x) otherwise.

(3.7)

3.2.1 E ample of t e Perceptron learning rule

A perceptron is initialized with the following weights: w = 1,ws = 2,0 = —2. The perceptron
learning rule is used to learn a correct discriminant function for a number of samples, sketched in
figure 3.3. The first sample A, with values x = (0.5,1.5) and target value d(x) = +1 is presented
to the network. From eq. (3.1) it can be calculated that the network output is +1, so no weights
are adjusted. The same is the case for point B, with values x = (—0.5,0.5) and target value
d(x) = —1; the network output is negative, so no change. When presenting point C with values
x = (0.5,0.5) the network output will be —1, while the target value d(x) = +1. According to
the perceptron learning rule, the weight changes are: Aw = 0.5, Aws = 0.5, A§ = 1. The new
weights are now: w = 1.5, wy = 2.5, 8 = —1, and sample C is classified correctly.
In figure 3.3 the discriminant function before and after this weight update is shown.

Ty | ____. original discriminant function
2 — dfter weight update

. + A +

Figure . : iscriminant function before and after weight update.

3.2.2 Convergence t eorem

For the perceptron learning rule there exists a convergence theorem, which states the following:

gn
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